Conference Agenda

- Keynote and Panelist Biographies ... 3
- Introduction to the CSU 2017 Stem Conference ... 10
- Keynote Presentations ... 16
 - Day 1, August 10, 2017
- Session 1 Presentations .. 26
 - New Directions in the Curriculum
- Session 1 Discussion ... 39
 - New Directions in the Curriculum
- Session 2 Presentations .. 42
 - HSI-Stem and Build
- Session 2 Discussion ... 59
 - HSI-Stem and Build
- Session 3 Presentations .. 62
 - Results of Helmsley-Funded Institutions
- Session 3 Discussion ... 72
 - Results of Helmsley-Funded Institutions
- Keynote Presentation ... 75
 - Day 2, August 11, 2017
- Session 4 Presentations .. 84
 - Transforming the Engineering Curriculum
- Session 4 Discussion ... 101
 - Transforming the Engineering Curriculum
- Session 5 Presentations .. 103
 - Undergraduate Research Experiences
- Session 5 Discussion ... 116
 - Undergraduate Research Experiences
- Session 6 Presentations .. 119
 - Using Science Education in Your Classroom
- Session 6 Discussion ... 132
 - Using Science Education in Your Classroom
- Attendee List .. 134
- Credits .. 138
<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 p.m. – 1:00 p.m.</td>
<td>Lunch</td>
</tr>
<tr>
<td>Welcome: Dr. Loren Blanchard, Executive Vice-Chancellor, Academic and Student Affairs Division</td>
<td></td>
</tr>
<tr>
<td>Introduction to the STEM Conference: Leroy Morishita, Ganesh Raman, and Sue Rosser</td>
<td></td>
</tr>
<tr>
<td>1:15 p.m. – 2:00 p.m.</td>
<td>Opening Keynote Lectures</td>
</tr>
<tr>
<td>STEM Education: The National (NSF) Perspective By: Chris Meyer</td>
<td></td>
</tr>
<tr>
<td>STEM Education: The California Perspective By: Maria Simani</td>
<td></td>
</tr>
<tr>
<td>2:00 p.m. – 3:00 p.m.</td>
<td>Session 1: New Directions in the Curriculum in Chemistry, Physics, and CS</td>
</tr>
<tr>
<td>The Importance of Using “Real Data” and Active Learning in Astronomy and Physics Curricula for Undergraduates By: Kimberly Coble, San Francisco State University</td>
<td></td>
</tr>
<tr>
<td>Broadening the Participation in Computing Through Interdisciplinary Computing Programs By: Belle Wei, San José State University</td>
<td></td>
</tr>
<tr>
<td>An Examination of Student Outcomes in Studio Chemistry at Cal Poly By: Alan L. Kiste, California Polytechnic State University, San Luis Obispo</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Research Helping to Observe Merging Black Holes from Across the Universe By: Joshua Smith, California State University, Fullerton</td>
<td></td>
</tr>
<tr>
<td>3:00 p.m. — 3:15 p.m.</td>
<td>Break</td>
</tr>
<tr>
<td>3:15 p.m. – 4:30 p.m.</td>
<td>Session 2: HSI-STEM and BUILD</td>
</tr>
<tr>
<td>Examining the Systemwide Impact of the HSI-STEM Grant By: Erika Baldwin, California State University, Long Beach</td>
<td></td>
</tr>
<tr>
<td>Leveraging HSI-STEM Grant Funding for Student Success and Institutional Change at CSU Channel Islands By: Philip Hampton, California State University Channel Islands</td>
<td></td>
</tr>
<tr>
<td>High Impact Practices for Student Success: Building, Sustaining, and Assessing Undergraduate Research Opportunities in STEM By: Heather Haeger, California State University, Monterey Bay</td>
<td></td>
</tr>
<tr>
<td>Transfer Excel Learning Community By: Eric Marinez, California State University, Long Beach</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Research Training Program By: Gabriela Chavira, California State University, Northridge</td>
<td></td>
</tr>
<tr>
<td>4:30 p.m. – 5:30 p.m.</td>
<td>Session 3: Results of Helmsley-funded Institutions</td>
</tr>
<tr>
<td>CSU STEM Collaboratives: Findings from the 2014-17 Helmsley Grant By: Ken O’Donnell, California State University, Dominguez Hills</td>
<td></td>
</tr>
<tr>
<td>FUSE: Igniting Change Across Campus By: Sharon Lanaghan, California State University, Dominguez Hills</td>
<td></td>
</tr>
<tr>
<td>Supporting Undergraduates Through Collaboration, Care, and Empowerment to Succeed in STEM By: Erica Wildy, California State University, East Bay</td>
<td></td>
</tr>
</tbody>
</table>
FRIDAY, AUGUST 11, 2017

<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 a.m.</td>
<td>Breakfast</td>
</tr>
<tr>
<td>7:45 a.m.</td>
<td>Keynote Lecture</td>
</tr>
<tr>
<td></td>
<td>Collectively Improving Our Science Teaching: Department-wide Efforts in Scientific Teaching That</td>
</tr>
<tr>
<td></td>
<td>Produced Classroom Transformations, Scholarly Publications, and Unanticipated Benefits</td>
</tr>
<tr>
<td></td>
<td>By: Kimberly Tanner, San Francisco State University</td>
</tr>
<tr>
<td>8:30 a.m.</td>
<td>Session 4: Transforming the Engineering Curriculum</td>
</tr>
<tr>
<td></td>
<td>Student Preparation for Introductory Physics for Engineering Majors: Data from a Preparatory Course at SJSU</td>
</tr>
<tr>
<td></td>
<td>By: Monika Kress, San José State University</td>
</tr>
<tr>
<td></td>
<td>An Integrated First-Year Experience in Engineering and Computer Science: FYrE@ECST</td>
</tr>
<tr>
<td></td>
<td>By: Emily L. Allen, California State University, Los Angeles</td>
</tr>
<tr>
<td></td>
<td>Transformational Learning in Engineering: Four Essential Conditions</td>
</tr>
<tr>
<td></td>
<td>By: Linda Vanasupa, California Polytechnic State University, San Luis Obispo</td>
</tr>
<tr>
<td></td>
<td>Strategies to Engage Students in Engineering Mechanics Courses</td>
</tr>
<tr>
<td></td>
<td>By: Mariappan “Jawa” Jawaharal, California State Polytechnic University, Pomona</td>
</tr>
<tr>
<td></td>
<td>The Ripple Effect of a Holistic Scholarship Program to Advance</td>
</tr>
<tr>
<td></td>
<td>Inclusivity in STEM</td>
</tr>
<tr>
<td></td>
<td>By: Lizbeth Schlemer, California Polytechnic State University, San Luis Obispo</td>
</tr>
<tr>
<td>9:45 a.m.</td>
<td>Break</td>
</tr>
<tr>
<td>10:00 a.m.</td>
<td>Session 5: Undergraduate Research Experiences</td>
</tr>
<tr>
<td></td>
<td>NSF-Funded Intensive Summer Research Experiences for Undergraduates (REUs) in Mathematics</td>
</tr>
<tr>
<td></td>
<td>By: Oscar Vega, California State University, Fresno</td>
</tr>
<tr>
<td></td>
<td>Summer Research Program for Undergraduates in UAV Technologies</td>
</tr>
<tr>
<td></td>
<td>By: Subodh Bhandari, California State Polytechnic University, Pomona</td>
</tr>
<tr>
<td></td>
<td>Integrating Paper Microfluidics in the Undergraduate Curriculum: Course-Based Undergraduate Research Experiences (CUREs)</td>
</tr>
<tr>
<td></td>
<td>By: Frank Gomez, California State University, Los Angeles</td>
</tr>
<tr>
<td></td>
<td>CSU ATLAS Program at Large Hadron Collider of CERN</td>
</tr>
<tr>
<td></td>
<td>By: Yongsheng Gao, California State University, Fresno</td>
</tr>
<tr>
<td>11:00 a.m.</td>
<td>Session 6: Using Science Education Research in Your Classroom</td>
</tr>
<tr>
<td></td>
<td>Investigating SFES-Science Faculty with Education Specialties – Across the CSU and the US</td>
</tr>
<tr>
<td></td>
<td>By: Kathy S. Williams, San Diego State University</td>
</tr>
<tr>
<td></td>
<td>Computer Science and the Next Generation Science Standards: Building the Silicon Valley Workforce Pipeline</td>
</tr>
<tr>
<td></td>
<td>By: Virginia Lehmkuhl-Dakhwe, San José State University</td>
</tr>
<tr>
<td></td>
<td>Working Toward Inclusive Student Success in STEM Through Place-Based Learning Communities</td>
</tr>
<tr>
<td></td>
<td>By: Amy Sprowles, Humboldt State University</td>
</tr>
<tr>
<td></td>
<td>The Benefits of Creation of An Entrepreneurial Mindset in STEM Education</td>
</tr>
<tr>
<td></td>
<td>By: Shereazad “Jimmy” Gandhi, California State University, Northridge</td>
</tr>
<tr>
<td>Noon – 12:45 p.m.</td>
<td>Closing Panel: Where do we go from here?</td>
</tr>
<tr>
<td></td>
<td>Featuring: Susan Baxter, Katherine Kantardjieff, Leroy Morishita, Ganesh Raman, Sue Rosser, and Kimberly Tanner</td>
</tr>
<tr>
<td>12:45 p.m.</td>
<td>Informal discussions over lunch</td>
</tr>
</tbody>
</table>
KEYNOTE & PANELIST BIOGRAPHIES
Dr. Susan M. Baxter

Has served as executive director of the California State University (CSU) Program for Education and Research in Biotechnology (CSUPERB) since March 2007. She coordinates a system-wide biotechnology community that involves over 650 faculty and students annually, administers grant and award programs for CSU faculty and students, organizes the annual CSU biotechnology symposium, develops strategic research and educational program opportunities, and serves as a liaison for the CSU with life sciences industry, government, philanthropic and educational partners. In addition, Baxter manages the National Science Foundation-funded CSU Innovation Corps (I-Corps™), a biotechnology entrepreneurship education program. Currently, she serves on boards at Biocom Institute and the California Life Sciences Institute, the nonprofit arms of two California biotechnology industry associations. Before joining CSUPERB, Baxter served as chief operating officer at the National Center for Genome Resources, where she managed a portfolio of state- and federally-funded projects providing software for collaborative genome and population genetics research teams. Previously she was vice president of research and genome analysis at GeneFormatics, an early-stage, venture-backed biotechnology company, and a tenured researcher at the New York State Department of Health’s Wadsworth Center where she ran a National Institutes of Health-supported group. Baxter began her career at Monsanto Agricultural Company where she received an Achievement Award for product development. She was a National Institutes of General Medical Sciences National Research Service Award (NRSA) postdoctoral fellow at the University of Oregon. Baxter received a doctorate in chemistry from Northwestern University and a bachelor’s degree in chemistry from the University of Virginia.
Dr. Katherine Kantardjieff

Among a growing list of women science deans and the founding dean of the College of Science and Mathematics at CSUSM.

An academic in the California State University system with nearly 25 years of experience, Dr. Kantardjieff established and directs the Keck Center for Molecular Structure (CMoIS), a full service and comprehensive X-ray diffraction facility serving the 23 campuses of the California State University system as a core facility of the California State University Program for Education and Research in Biotechnology (CSUPERB) consortium. As Director of CMoIS, she has been a pioneer in remote enabling of instrumentation in chemistry and stewards a research partnership between the CSU and the Stanford Synchrotron Radiation Lightsource.

As Dean of the College of Science and Mathematics (CSM), Dr. Kantardjieff is an innovative and engaged leader who works with faculty and staff to build and sustain a supportive and inspiring undergraduate and Master’s level educational environment where excellent instruction, interdisciplinary and collaborative research, innovation, and creative endeavors provide students with the foundational knowledge and skills needed to meet technological challenges in a rapidly evolving world. Under her leadership, CSM is committed to be a resource for innovation and workforce development in the region we serve: South Orange County, Southwest Riverside County and North San Diego County.

Prior to coming to San Marcos, Dr. Kantardjieff held academic appointments as Professor and Chair of Chemistry at California State Polytechnic University Pomona and Professor of Chemistry and Biochemistry at California State University Fullerton. She received B.S. degrees in Chemistry and Biology from the University of Southern California, and M.S. and Ph.D. degrees in Physical Chemistry from the University of California at Los Angeles. Dr. Kantardjieff is a biophysical chemist and crystallographer, whose research utilizes combined experimental and computational approaches to better understand how structure controls chemical and physical properties of biomolecules, and applies this knowledge in drug design and development, as well as in engineering molecules with defined properties. She has brought in more than $5 million in grants to the CSU from government funding agencies and industry, and she has published more than 60 articles on scientific research and education.

Dr. Kantardjieff’s professional service includes membership on the United States National Committee for Crystallography NAS/NRC for nearly 12 years, chairing the Education Subcommittee from 2002-2006, serving as USNCCr Vice Chair from 2006-2009, and serving as USNCCr Chair from 2009-2012. She has represented the United States three times as a delegate to the International Union of Crystallography Congress and General Assembly, and she chaired the delegation in 2011. Katherine Kantardjieff is Chair of the National User Facility Organization (NUFO) Steering Committee and Co-Editor of the Journal of Applied Crystallography. As a member of the American Chemical Society and the American Crystallographic Association, she has been active in promoting the professional development of women in science, education and training of science teachers, and crystallographic science in Latin America.
Dr. Leroy M. Morishita

Fifth president of California State University, East Bay. He was appointed to the position in January 2012 by the CSU Board of Trustees, after taking office on July 1, 2011 as the Interim President. He came to Cal State East Bay from San Francisco State University, where he served as Executive Vice President for Administration and Finance and Chief Financial Officer.

Educational Background: A native Californian, President Morishita holds a Bachelor of Arts in Psychology from the University of California, Berkeley and a Master of Science in Counseling from San Francisco State University. He also earned a Doctorate in Education in Administration, Planning and Social Policy from the Harvard Graduate School of Education.

Professional Experience: Dr. Morishita has more than 30 years of experience in higher education, as an educator and administrator. He first worked in the California State University system from 1978 to 1981 as Counseling Coordinator and Counselor for the Educational Opportunity Program at San Francisco State University.

Dr. Morishita’s administrative experience includes working in Massachusetts at the Institute on Computing in Schools at the Harvard Graduate School of Education, at Salem State College, and at Tufts University working as the Director of Asian Student Programming. Returning to the CSU system in 1984, he worked in Admissions and Records at SFSU and in 1987-88 was an Administrative Fellow to the Provost at CSUEB (then Cal State Hayward).

Dr. Morishita was hired as the Director of University and Budget Planning at SFSU. In 1996 additional responsibilities included serving as the Interim Executive Director of Enrollment Planning and Management. He became the Associate Vice President of Budget Planning and Resource Management in 1997 and was selected as the Vice President of Physical Planning and Development in 2001. Morishita was named SFSU’s Vice President of Administration and Finance and Chief Financial Officer in 2002 and Executive Vice President in 2009.

Affiliations: Dr. Morishita serves on several committees for the California State University 23 campus system. He is a member of the CSU President’s Council on Underserved Communities and the Presidential Coordinator for the Asian American/Pacific Islander Initiative. In addition, he serves as co-chair of the Taskforce for a Sustainable Financial Model for the California State University System and as a member of the CSU Commission on Online Education.

He has also served on several committees, including the CSU Risk Management Authority from 2002 to 2011, serving as Chair from 2006 to 2010 and Vice Chair from 2004 to 2006; the CSU Systemwide Budget Advisory Committee from 2004 to 2011; and the CSU Investment Committee from 2007 to 2010. Previously, Morishita served as a commissioner of the Western Association for Senior Colleges and Universities from 2007-2013, chairing its Finance & Operations committee for three years.

Dr. Morishita is Chair of the California Campus Compact Executive Board, Chair of the Presidents’ and Chancellor’s Board of the California Collegiate Athletic Association, and a member of the American Association of State Colleges and Universities (AASCU) Investment Committee. Locally he is a founding member of the Chabot Space and Science Center Leadership Council, a trustee of the Institute of Buddhist Studies in Berkeley, and serves on the board of directors of the Bay Area Council and the East Bay Leadership Council. He is a member of the Executive Committee and a board member of the East Bay Economic Development Alliance. He chairs the Board of Trustees of the JA Health Benefits Trust.
Dr. Christopher R. Meyer

New Dean of the College of Science and Mathematics at California State University, Fresno (July 2017). Prior to this, he was a faculty member in the Department of Chemistry and Biochemistry at California State University, Fullerton, serving as Chair of the department from 2010 - 2015. His NSF funded lab at Fullerton focused on the regulation of carbon metabolism and the generation of biodegradable and renewable carbon sources. In 2008-2009, he served as a rotating Program Director at the National Science Foundation (NSF) in BIO MCB where he convened review panels, helped manage a large and diverse research portfolio, and participated in policy discussions on interdisciplinary, collaborative, and transformative research, and broader impacts. He also participated in Working Groups across directorates, including Engineering and Undergraduate Education, as well as with other funding agencies. He returned to NSF as a rotating Program Director in the Division of Biological Infrastructure (DBI) in August 2015 where he participated in management of the Research Experience for Undergraduates (REU) program, served as lead for the Research Coordination Network (RCN) for Undergraduate Biology Education (UBE) program, as well as the BIO representative for the NSF I Corps, HBCU UP, and INCLUDES (Inclusion Across the Nation of Learners of Underrepresented Discoverers in Engineering and Science) programs. In addition, he participated in the Graduate Research Fellowship Program (GRFP), the NSF Research Traineeship (NRT), Innovations in Graduate Education (IGE) programs, and the IUSE (Improving Undergraduate STEM Education) program.

Dr. Ganesh Raman

Dr. Ganesh Raman is the Assistant Vice Chancellor for Research at the California State University Office of the Chancellor. In this role, he is the senior academic official responsible for the vision, advancement and administration of CSU’s research and scholarly mission and enterprise. He is also a member of the senior administrative team of Academic and Student Affairs.

Dr. Raman formerly served as the Deputy Vice Provost for Research at the Illinois Institute of Technology. At Illinois Tech, he played a key role in the inaugural administration of a $1M prize focusing on Innovation with Societal Impact (Nayar Prize). He served as Co-Principal Investigator for an $8M Department of Energy University/Industry Consortium grant involving more than a dozen organizations. In addition to his administrative role, he was a professor in the Mechanical, Materials and Aerospace Engineering Department in the Armour College of Engineering at Illinois Tech. He was named a fellow by the American Institute of Aeronautics and Astronautics (AIAA), the world’s largest aerospace professional society. He is the founding editor-in-chief of the International Journal of Aeroacoustics and is also a fellow of the American Society of Mechanical Engineers and the Royal Aeronautical Society, UK.

Dr. Raman began his career at NASA Glenn Research Center where he worked for 14 years conducting research on aerodynamics, unsteady fluid dynamics and aeroacoustics. He is internationally recognized for his research in the areas of aeroacoustics and flow control and has worked on projects for Boeing, NASA, the US Air Force and DARPA. He has over 150 publications that include contributions to leading scientific journals such as the Journal of Fluid Mechanics and Physics of Fluids.

Dr. Raman earned his Ph.D. in Mechanical and Aerospace Engineering with a specialization in Fluid Dynamics from Case Western Reserve University in 1991.
Dr. Sue Rosser

After earning her Ph.D. in Zoology from the University of Wisconsin-Madison, Rosser became a champion for women’s studies starting in the mid-seventies. She has written more than 130 journal articles on the theoretical and applied problems of women and science and women’s health. She is also the author of 13 books, through which she has made significant contributions to understanding and promoting the role of women in science. At SF State Rosser was a professor of women’s studies.

During her seven years on the SF State campus, Provost Rosser made a significant impact on the University. Some of her many accomplishments include: successful 10-year reaccreditation from WASC, representing the maximum time for which WASC issues reaccreditation, hiring of: five College deans, two deans of College of Extended Learning, one dean of Faculty Affairs, one dean of Undergraduate Studies, one associate vice president of the Office of Research and Sponsored Programs, one associate vice president of Academic Affairs Operations, and more than 209 tenure and tenure-track faculty, initiating hires of clusters of faculty to increase interdisciplinary approaches to scholarship across the University, the tenure and promotion of more than 400 faculty, and managing the Academic Affairs budget during the Great Recession, which represented the worst cuts in California and CSU history.

Sue Rosser joined the CSU Chancellor’s Office as Special Advisor on Research Development and External Partnerships. Rosser, a scientist and former senior program officer at the National Science Foundation, concentrates her efforts on expanding under-graduate research opportunities — a key area of investment for the CSU that supports retention and student success. She is also among those working to craft new onboarding practices for new provosts and vice presidents of student affairs.

Dr. Maria C. Simani

Executive Director of the California Science Project (CSP), a statewide network providing professional development for K-12 teachers in science.

Dr. Simani received her Ph.D. in experimental particle physics in the Netherlands and then conducted particle physicist research at DESY, Germany, at the Stanford Linear Accelerator Center, and at the Lawrence Livermore National Laboratory.

Dr. Simani also researched brain functioning and learning at the Keck Institute for Integrative Neuroscience at the University of California, San Francisco.

Since 2012, Dr. Simani has served on the Science Expert Committee of the California Department of Education to review and provide recommendations for the adoption of the Next Generation Science Standards. Dr. Simani and the California Science Project have also contributed as lead writers of the new California Science Curriculum Framework. The California Commission on the Status of Women and Girls nominated Dr. Simani in 2013 as one of the Trailblazer STEM Women of the Year.
Dr. Kimberly Tanner

Tenured Professor of Biology with a research focus in Biology Education and is Director of SEPAL — The Science Education Partnership and Assessment Laboratory, which is her research group within the Department of Biology at San Francisco State University. Since joining the SFSU faculty in 2004, Dr. Tanner’s SEPAL research group has addressed three main lines of inquiry: 1) understanding the novice-to-expert transition among undergraduate biology majors, 2) developing novel assessment approaches to revealing student conceptions in science, and 3) evaluating the effectiveness of approaches to promoting equity in science. Her collaborative research investigating Science Faculty with Education Specialties (SFES) has been published in Science, Proceedings of the National Academy of Sciences, and PLOS ONE. She has been Principal Investigator on NSF-funded GK-12, TUES, CAREER, and Core Research awards, as well on a National Institutes of Health Science Education Partnership award and a Howard Hughes Medical Institute Undergraduate Science Education Award. Through these awards, she has engaged hundreds of science faculty, postdoctoral fellows, and graduate students — locally, regionally, and nationally — in professional development to support innovative and evidence-based science teaching. Dr. Tanner is a founding member of the Editorial Board for CBE: Life Sciences Education, co-author of the widely read Approaches to Biology Teaching and Learning features, and co-author of Transformations: Approaches to College Science Teaching. Dr. Tanner regularly serves on committees for the National Academy of Sciences, the National Science Foundation, and the American Society for Cell Biology. Dr. Tanner has been nationally and internationally recognized for both her research and her teaching in biology, including receiving the National Outstanding Undergraduate Science Teacher Award from the Society for College Science Teachers and being invited faculty for the Latin American School for Education, Cognitive, and Neural Sciences.

Kimberly earned her BA in Biochemistry from Rice University in 1991, her PhD in Neuroscience from UC San Francisco in 1997. She also completed a National Science Foundation Postdoctoral Fellowship in Science, Math, Engineering, and Technology Education (PFSMETE) jointly between Stanford University and UC San Francisco.
INTRODUCTION TO THE CSU 2017 STEM CONFERENCE
The overall objective of the conference is to provide a mechanism through which California State University leaders of STEM education activities can share and disseminate results throughout the system, learn from one another, and establish collaboration that will lead to wider implementation of best practices for education and research and more scalable, systemic change efforts.

A secondary objective of this conference is to prepare to launch a CSU STEMNet multi-campus affinity group to inform the development and implementation of scalable and cost-effective practices for improving STEM degree attainment across the CSU. During the conference discussion periods at the end of each session and during the closing panel, we wish to learn about the needs for CSU STEM education, the key foundational pillars of the STEMNet affinity group, and where should we go from here.
Accomplishments

Research in the CSU has been growing at a time when external research funding for higher education is decreasing nationally. As we continue to build faculty excellence, enhanced by our new initiative in proposal development mentoring, we expect to grow research steadily to support fully the CSU mission.

We have representatives from many STEM groups here today, including those from the Helmsley Trust funded the STEM Collaboratives grant that is also sponsoring this conference. In addition, we have faculty funded by many federal agencies including National Science Foundation (NSF), National Institutes of Health (NIH), and the U.S. Department of Education.

We want to highlight two major CSU efforts, totaling $127 million in external federal funding.

In 2016, 12 CSU campuses recognized as Hispanic Serving Institutions (HSIs) were awarded more than $66 million from the Department of Education for use over the next five years to increase Latino student success in STEM. The CSU programs aim to increase the number of Latino students earning degrees in STEM fields and develop model transfer pathways for STEM between community colleges and the CSU. These grants align with the CSU’s student success efforts and contribute to California’s diverse workforce needs.

Work also continues at the three CSU campuses that were awarded $61 million by the NIH to enhance workforce diversity in biomedical research, in conjunction with their subcontractor partners in the University of California. The CSU has three of 10 grants funded nationally as part of the NIH BUILD (Building Infrastructure Leading to Diversity) initiative and these campuses are preparing for follow-on funding proposal efforts. These efforts help the CSU develop new approaches that engage researchers, including those from traditionally underserved communities in California, and help them enter and thrive in the biomedical sciences workforce.
Common Themes

In the CSU, STEM exposes faculty and students to a multi-disciplinary world. A student’s major or chosen area is not a life sentence. One can move into a new area for graduate work or in one’s own career. In addition, new discoveries are occurring at the intersections of multiple disciplines. STEM is also a vehicle to address the societal problems of today and in the future. The conference presentations reveals many common themes: peer and faculty mentoring, sense of belonging, identity, social events, shared commitment, intervention, active learning, experiential, immersive, collaboration, undergraduate research, and multidisciplinary research. We would like you to watch for these connectors and to uncover others that may not be visible at first glance.

Conference Highlights

This event provided input from faculty and administrators about the STEMNet affinity group that led to the following key suggestions:

LEARNING TECHNIQUES

» Concentrate on mentoring (from faculty and peers) and fostering a sense of community because of the critical link to student completion

» Expand opportunities for active learning (interactive, hands-on, experiential, immersive) because it dramatically improves learning quality

» Focus on how to strengthen CSU interdisciplinary and multi-disciplinary collaboration, because it is the wave of the future

» Deepen our understanding of how undergraduate research makes a difference

SOCIAL ISSUES AND OPPORTUNITIES

» Expand residential and orientation programs because they help students adjust to college life

» Address the fact that students prefer to attend campuses or participate in programs no more than 150 miles from their home town

» Obtain student and faculty commitments to shared program goals

» Improve sense of identity by treating students, faculty, and staff equally

» Move away from deficit model
INTRODUCTION TO THE CSU 2017 STEM CONFERENCE

INSTITUTIONAL CHANGES

» Foster pockets of excellence by hiring faculty in clusters within certain disciplines

» Address the fact that disciplinary differences within STEM are significant: Computer Science and Engineering graduates find jobs with a Bachelor of Science degree, while math and science graduates need a graduate degree

» Capitalize on innovative CSU programs that stand out: including chemistry studios, CERN Lab, UAV Unmanned Aerial Vehicles immersion, and merging black holes

» Work from evidence and assessment to determine why problems exist and the sources of solutions

» Capitalize on the fact that the CSU is unique in these respects: diverse, adaptable hands-on research; lower barriers to involvement compared with R1 institutions; Course-Based Undergraduate Research Experiences (CUREs) programs

» Take note the fact that acting is the only major that does not require computing skills

» Break down silos and concentrate on shared resources

» Investigate how to build a CSU asset model that is not necessarily based on R1 models

ADMINISTRATIVE IMPROVEMENTS

» Address the fact that many programs require more than five years to fulfill their goals so sustainability and constant fundraising are critical

» Avoid expanding until perfecting program elements

» Perform cost-benefit analyses to identify savings to help with institutionalizing programs

COMMON THEMES

Given that the conference organizers selected speakers for general topics such as “Chemistry, Physics, and Computer Science Curriculum,” “Undergraduate Research Experience,” and results from HSI, BUILD, and Helmsley programs and provided no instructions or suggestions about topics, it is striking that the 27 presentations from faculty at 15 different campuses with significant diversity in size and character raised the same eight subjects with the frequency displayed in the following table—ranging from 33 percent to 66 percent of the time.

The CSU STEM faculty share a sense that techniques commonly used when they were undergraduates must change. Formerly, students:

» Passively took notes on the bestowed wisdom of a figure on a pedestal who lectured to them—a faculty-centered delivery mode

» Concentrated on individual achievements—in competitive circumstances that discouraged sharing

» Specialized in narrow fields within a single department discipline—a fiercely stove-piped environment with rigid organizational boundaries

» Typically waited until they had completed their degrees and taken first jobs before obtaining any hands-on experience in their disciplines
As this table demonstrates, the university learning experience is changing dramatically, evoking Dorothy’s observation in The Wizard of Oz: “Toto, I’ve a feeling we’re not in Kansas anymore.” Instead, our university STEM curricula are engaging young people in student-centered discovery experiences where they collaborate on interdisciplinary projects that involve mentoring from both faculty and peers and that seek to instill a sense of belonging.

These changes are welcome evidence that our universities are acknowledging, even embracing, data that have for scores of decades indicated humans learn best when we offer active engagement in a collaborative environment.
KEYNOTE PRESENTATIONS

DAY 1 | AUGUST 10, 2017

STEM Education: The National (NSF) Perspective
By: Chris Meyer

STEM Education: The California Perspective
By: Maria Simani
STEM Education: The National (NSF) Perspective

Christopher R. Meyer
Dean, College of Science and Mathematics
California State University, Fresno
crmeyer@csufresno.edu

NSF: Where Discovery Begins...

- Created by Congress in 1950; mission to support basic research and people to create knowledge that transforms the future; all fields of science (except medical)
- Supports “high risk, high payoff” ideas, novel collaborations, research fully integrated with education
- Directorates include BIO, CISE, ENG, GEO, MPS, SBE, EHR
- $7.5 Billion (~12,000 new awards/year); supports ~200,000 people
- Gold standard for peer review: Intellectual Merit, Broader Impact

Outline

- NSF Overview
- Challenges and Opportunities
- STEM Disciplines and EHR
- Arc of STEM training: Graduate students, undergraduates
- Continuing, New, and Emerging Opportunities: Research and Human Resources
Challenges and Opportunities

- There is a critical shortage of US students being trained in STEM disciplines

- NAS 2010 Report: US ranked 27th among developed nations in producing undergraduate degrees in STEM, 46th in quality of math and science education

- Fewer than 40% of students entering college intent on majoring in STEM complete a STEM degree (many leave in second year)

- Increasing retention from 40% to 50% would generate 75% of the targeted 1 million additional STEM graduates over the next decade

High Impact Practice of Research

- General Definition: Undertaking research is an inquiry or investigation conducted by an undergraduate that makes an original intellectual or creative contribution to the discipline (Wenzel 2010)

- NSF, AAAS, NIH, HHMI, Vision and Change (2011): Introduce research experiences as an integral component of biology education for all students

- Undergraduates can investigate leads and take risks not practical for postdocs in exploring research projects

How do students benefit from participating in research?

- Identity & Connections
- Education & Career Pursuits
- Attitudes & Dispositions
- Knowledge & Skills

Cognitive factors measure: measures that lack validity evidence. Self-selecting populations (for critique see) Linn, Palmer, Barranger, Gerard, & Stone, 2015

Adapted from Erin Dakey, University of Georgia
The CSU 2017 STEM Conference
August 10-11, 2017

STEM and EHR Directorate

- IUSE: EHR is a broad program focused on undergraduate STEM education
 - For all types of institutions
 - For all aspects of undergraduate STEM education
 - Includes pre-service education for future K-12 teachers

- Program Goals
 - Improve STEM Learning & Learning Environments
 - Broaden Participation & Institutional Capacity for STEM Learning
 - Build the Professional STEM Workforce for tomorrow

IUSE: EHR Program Tracks and Funding Tiers

- Engaged Student Learning Track
 - Exploration and Design Tier (up to $30k, 2 years)
 - Development and Implementation Tier - Level I (up to $60k, 3 years)
 - Development and Implementation Tier - Level II (601K-$2M, 5 years)

- Institutional and Community Transformation Track
 - Exploration and Design Tier (up to $30k, 2 years)
 - Development and Implementation Tier - (up to $3M, 5 years)

- Research studies may be submitted to either Track
- Workshop and conference proposals are encouraged

Interaction Between STEM Education Research and Practice

Collaborators among STEM disciplinary experts and STEM education researchers fosters a “cycle of innovation”
- New questions emerge from innovative practice to be solved by new research
- New solutions derived from research to be implemented through modified practice

Collaboration among STEM disciplinary experts, STEM education researchers or cognitive scientists, and STEM education practitioners are encouraged

The State of Graduate Education

Some Report Recommendations

- Enhance/expand professional skills training.
- Prepare students for multiple career pathways.
- Create incentives for university-industry partnerships, including internships.
- Enhance interdisciplinary training/collaborations.
- Apply evidence-based approaches to increase retention and reduce time to degree.

Arc of Student Training: Graduate Education Concerns

- Time to degree too long, completion rate low
- Master’s degree is undervalued
- Narrow training, few transferrable skills
- Career mentoring focused on academia
- Not aligned with disciplinary, workforce, societal, and student needs

The California State University
2017 CSU STEM Conference
How to best prepare undergraduates:

- Engage students in High Impact Practices (HIPs): including early integration of research into courses, independent research experiences (a strong tradition in the CSUs!)
- Include team work, collaboration, and interdisciplinary training in the curriculum and research training
- Encourage students to participate in summer research experiences (i.e. NSF REU sites), entrepreneurial training and industrial internships, and applying for the NSF Graduate Research Fellowship Program (GRFP) support
- Challenges: How to scale these experiences for sustainability? What models are available to adapt? How can more resources be leveraged?

New and Emerging Opportunities

- Which students get access to research experiences?
- Consider how you find undergraduate researchers...
- Values of CURIs for students and faculty

Course-based Undergraduate Research Experiences

When whole classes of students address a research question or problem that is of interest to the scientific community
More Opportunities

• Leveraging of resources by participation in Research Coordination Networks (RCN) (i.e. Undergraduate Biology Education [UBE]) and INCLUDES, DCLs...

- Bring together biology and statistics education to develop models for the teaching of statistics in introductory biology courses
- Well qualified team, strong steering committee, build on success of previous NSF supportednet
- Scale of projects: large scale, high engagement, 200/300 students per network, includes outreach to CCs, HSIs
- Tracking and outcomes: look at change, online learning communities, development and dissemination of new modules,

• Improvement in the teaching of statistical thinking in undergraduate biology

• 1703066 RCN UBE: Statistical Thinking in Undergraduate Biology (UBE) Network
 A network for coordinating the teaching and assessment of statistical thinking in introductory biology
 Pi: Nathan Turgeon, Drake College, Sioux Center, Iowa

• 1703066 RCN UBE: Statistical Thinking in Undergraduate Biology (UBE) Network
 A network for coordinating the teaching and assessment of statistical thinking in introductory biology
 Pi: Nathan Turgeon, Drake College, Sioux Center, Iowa

• Research brings together ecologically aware and High Throughput researchers
 (workshops, virtual community, online handbook) to design and assess investigative biology case studies based on HT BioScience research
 (development of synthetic HT data as a great opportunity to introduce undergraduates to the field)
 - Diverse and inclusive team, diverse and inclusive steering committee
 - Network includes all career faculty and postdocs
 - Strong potential to drive innovation in the development of case studies for HT BioScience that can benefit thousands of undergraduates

Recent Awards

 • PI: Mitch Carter, North Carolina State University

Keep Darwin’s Words in mind:

"It is not the strongest of the species that survives, nor the most intelligent that survives; it is the one that is the MOST ADAPTABLE!"
STEM Education: The California Perspective

Maria C. Simani, Ph.D.
Executive Director, California Science Project
University of California, Riverside
maria.simani@ucr.edu

Why do we need a robust K-12 STEM education?

- Train the next generation of scientists and engineers
- Develop familiarity with basic science concepts so to make informed everyday decisions
- Enable participation in democratic discourse over scientific and technological issues
- Cultivate critical-thinking skills
What scale of effort is needed statewide?

- 6,200,000 K-12 students
- 295,000 teachers
- 10,000 schools

Soon to come: more engineering and CS courses!

How can education help develop STEM students?

- A. Calabrese-Barton
- M. Eisenhart
- N. Brickhouse
- H.Carlone
- J. Rudolph
- K. Gutierrez

Tracing a future in science over time and spaces

(Calabrese-Barton, 2013)
Learning science depends not only on the accumulation of facts and concepts but also on the development of an identity as a competent learner of science with motivation and interest to learn more. [...] Such identity formation is valuable not only for the small number of students who, over the course of a lifetime, will come to view themselves as scientists or engineers, but also for the great majority of students who do not follow these professional paths. Science learning in school leads to citizens with the confidence, ability, and inclination to continue learning about issues, scientific and otherwise, that affect their lives and communities. (NRC, 2012)
Summary

• **Summary point 1:** Preparing students to meet the increasing demand of STEM-literate individual requires a committed alignment between school policies, new standards, teaching practices, and access and equity resources.

• **Summary point 2:** the new CA standards provide an entry point to transform K-12 education systems.
SESSION 1 PRESENTATIONS
NEW DIRECTIONS IN THE CURRICULUM IN CHEMISTRY, PHYSICS AND CS

Importance of Using “Real Data” and Active Learning in Astronomy/Physics Curricula for UGs
By: Kimberly Coble

Broadening the Participation in Computing—Interdisciplinary Computing Programs
By: Belle Wei

An Examination of Student Outcomes in Studio Chemistry at Cal Poly
By: Alan Kiste

Undergraduate Research Helping to Observe Black Hole Mergers from across the Universe
By: Joshua Smith
The Importance of Using “Real Data” and Active Learning in Astronomy and Physics Curricula for Undergraduates

Kim Coble
Physics & Astronomy
San Francisco State
kcoble@sfsu.edu

The Big Ideas in Cosmology

- Research on students’ ideas
- Curriculum development
- Modern topics that astronomers are currently studying
- Students describe the value of real data and interactive engagement in understanding the material and in changing their beliefs
- See papers in AER, PRPER

We have an app for that!
Realistic Scientific Practices

- Global Telescope Network (GTN) http://gtn.sonoma.edu
- Research-Based Science Education (RBSE) http://rbseu.uaa.alaska.edu
- Students engage in: planning, observations, data analysis, peer review, presentations
- Affective outcomes: increased confidence, self-efficacy, positive affect, what scientists really do
- You really have to think and analyze, where I felt like in other science classes, it was just like, "oh, here's the instructions, do it"
- I never would have expected that I could do my own scientific research
- This project has taught me that the process for determining what proposal is worthy of being funded for research is not an easy task
- We got a chance to go through what real scientists in this field actually do on a daily basis

Teaching for Equity

- Undergraduate Learning Assistants: weekly pedagogy and prep sessions, intro astronomy, chemistry, physics
- SF Build: Faculty agents of change (CoSE), social justice pedagogy group (CHSS), workshops
- Recognizing the strengths of students while addressing needs
- Facilitate active learning, inclusive classroom climate and dynamics

Students

"Hands-on and engaging course that doesn't just teach us but helps us learn"

Learning Assistants

"I feel like I'm getting a better understanding of mechanics"
"I like this style of learning because in physics that's how you learn... you have to work problems"
"I definitely see my professor as more of a mentor now"

Instructors

"For the longer or more challenging activities... more students were able to get further"
"[ILAs] can provide faculty very useful insights on what students are struggling with, both in the classroom and in their everyday lives"
"Conveys the message that [intro] classes are important and that teaching well is a goal"
Needed: rooms conducive to active learning; time, incentives for lecturers
Collaborators

- **Big Ideas in Cosmology:** research on student ideas about cosmology, interactive curriculum featuring “real data”

 Lynn Cominsky and the Sonoma State EPO group. Kevin McLin (SFSU), Jandiee Bailey (Temple), Anne Meleveir (SSU), Carolyn Peruta (SSU), Laura Trujillo (Adler Planetarium), Mallory Conion (UIUC), Geraldine Cochran (Rutgers), Aaron White (SFSU), K'Maja Bell, Foschowy Brico, Carmen Camamilo, Kathy Flegg, Patrycia Hayes, Virginia Hayes, Harold Johnson, Donna Larrieu, Dominique Martin, Melissa Nickerson, Tim Sanders, Harry Swain, Mike Tyler (Chicago State). Great River Learning / Keridall Hunt

- **GTN and RBSE:** realistic scientific practices

 Michelle Wooten, Travis Rector (U. Alaska Anchorage), Andy Puckett (Columbus State), Archana Dabria (SFSU). Alex Le (Chicago State), Kaile Berryhill (Los Medanos, Solano CC)

- **Teaching for Equity:** inclusive, active classroom, learning assistants

 SF Build faculty agents of change (Jessica Fielder, Alegria Ercy-Reveles, Leti Marquez-Magana, and others), Tobi Thomas (SFSU)
 Jake Canepepos, Megan Tanguaon (SFSU), Mel Sobella (Chicago State), LAs & mentors
Broadening the Participation in Computing - Interdisciplinary Computing Programs

Belle W. Y. Wei
Guidry Chair for Engineering Education and Innovative Learning, SJSU
Belle.wei@sjsu.edu

Computing Workforce Gap

- Computing - 1.08 M Job Openings (U.S. Bureau of Labor Statistics)
- B.S. Graduates in CS - 40 K/Yr

Projected STEM Job Openings (14-24)

<table>
<thead>
<tr>
<th>Occupation</th>
<th>2014</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical science occupations</td>
<td>30/43.0</td>
<td></td>
</tr>
<tr>
<td>Physical scientists</td>
<td>72.8/19.9</td>
<td></td>
</tr>
<tr>
<td>Engineering technicians, except drafters</td>
<td>108.3/6.9</td>
<td></td>
</tr>
<tr>
<td>Life scientists</td>
<td>37.4/19.2</td>
<td></td>
</tr>
<tr>
<td>Life, physical, and social science technicians</td>
<td>42.8/23.3</td>
<td></td>
</tr>
<tr>
<td>Social scientists and related workers</td>
<td>56.7/38.5</td>
<td></td>
</tr>
<tr>
<td>Engineers</td>
<td>441.6/69.3</td>
<td></td>
</tr>
<tr>
<td>Computer occupations</td>
<td>562.9/514.3</td>
<td></td>
</tr>
</tbody>
</table>

- Replacement Needs
- Growth Needs
Gender Gap

- Women: 11% (CSU) vs. 18% (U.S.)
- 50% Drop Since 1980’s
- 58% of U.S. College Graduates

Implications
- Economic, Social, Political
- New Technologies - AI

<table>
<thead>
<tr>
<th>Campuses</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
<th>% Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fullerton</td>
<td>67</td>
<td>10</td>
<td>77</td>
<td>13%</td>
</tr>
<tr>
<td>Long Beach</td>
<td>71</td>
<td>10</td>
<td>81</td>
<td>12%</td>
</tr>
<tr>
<td>Northridge</td>
<td>61</td>
<td>7</td>
<td>68</td>
<td>10%</td>
</tr>
<tr>
<td>Pomona</td>
<td>104</td>
<td>9</td>
<td>113</td>
<td>8%</td>
</tr>
<tr>
<td>Sacramento</td>
<td>65</td>
<td>8</td>
<td>73</td>
<td>11%</td>
</tr>
<tr>
<td>San Diego</td>
<td>68</td>
<td>6</td>
<td>74</td>
<td>8%</td>
</tr>
<tr>
<td>San Francisco</td>
<td>52</td>
<td>3</td>
<td>55</td>
<td>5%</td>
</tr>
<tr>
<td>San Jose</td>
<td>98</td>
<td>22</td>
<td>120</td>
<td>18%</td>
</tr>
<tr>
<td>SLO</td>
<td>81</td>
<td>10</td>
<td>91</td>
<td>11%</td>
</tr>
<tr>
<td>Total</td>
<td>667</td>
<td>85</td>
<td>752</td>
<td>11%</td>
</tr>
<tr>
<td>Average</td>
<td>74%</td>
<td>9%</td>
<td>84%</td>
<td>11%</td>
</tr>
</tbody>
</table>
Turn the Tide for Women in Technology

- Problem: Workforce and Gender Gap in the Digital Economy
- Solution: New Interdisciplinary Computing Educational and Career Pathways Created by University-Industry-Government Partnership
An Examination of Student Outcomes in Studio Chemistry at Cal Poly

Alan L. Kiste
Assoc. Professor of Chemistry & Biochemistry
California Polytechnic State University,
San Luis Obispo
akiste@calpoly.edu

Effect on Content Knowledge & DFW Rate

N=426 traditional, 258 studio; (95% confidence interval: 3.5-15%)
1. A significant problem in learning chemistry is being able to memorize all the information I need to know.
2. To understand a chemical reaction, I think about the interactions between atoms and molecules.
3. When I am solving a chemistry problem, I try to decide what would be a reasonable value for the answer.
Summary

• 9.2% increase in performance as measured by final exam grades
• 12% decrease in DFW rate
• Positive shifts to more expert-like learning attitudes
• Student opinions are overwhelmingly positive about studio

DOI: 10.1098/CSERP00202A
Undergraduate research helping to observe black hole mergers from across the universe

Joshua Smith
Dan Back, Director of Gravitational-Wave Physics and Astronomy
California State University, Fullerton
jsmith@fullerton.edu

Gravitational Waves

• Predicted by Einstein in 1915
• Ripples in spacetime that travel at speed of light
• Allow us to “see” astronomy inaccessible to light, such as black holes
• An entirely new spectrum in which to view the universe
• LIGO (Laser Interferometer Gravitational-Wave Observatory) international collaboration to observe gravitational waves (GWs)
 • Fullerton a member, Caltech a leading LIGO site

Credit: Library of Congress
Waves at Fullerton

- College NSM center: GW research, education, community engagement
- Disruptive model: Student centered research in GW optics, neutron star / black hole astrophysics, relativity
- Currently: 4 faculty, 1 postdoc, 1 senior developer, 20 students
- 24 grads: 11 into PhD programs (Syracuse, MIT, Caltech, LSU, AZ, Ohio), 9 industry (optics, aerospace), 4 teaching

Funding Profile

- Seeded with Smith startup, NSF, Research Corporation awards
- $15k CSU “Center and Institute Planning and Expansion Program”
- $90k CSUF center renovations, ~$300k supercomputer (NSF, RCSA, startup)
- $250k Dan Black (alumnus, donor) named directorship
- Two physics faculty hold prestigious 5-year NSF CAREER awards
- $1M NSF PAARE award – GW-centric student pathway from school and community college to CSU Fullerton to Syracuse University PhD
Discoveries

- First direct detection of GWs
- Opens a new field: GW astronomy
- First observations of black holes of this size (10-30 times the mass of the sun)
- First observations of two black holes merging to form one (three mergers observed so far)
- Tests Einstein’s predictions in strong gravity
- Fullerton student and faculty contributions

Summary

- Bold vision by CSUF administration
 - Willingness to support, expand on dreams of junior faculty member, establish a center, hire two new faculty members, support members’ career development...

 - Established sustainable, productive center performing serious undergraduate-centered research, education, outreach, and...

 - High impact on student success in STEM:
 - Bridging the teaching/research “divide”
 - Career advancement: Jobs, grad schools, publications, awards

 - CSU playing significant role in major astronomical discoveries, will play in future projects and missions
Questions

» How does the studio teaching system affect capacity to accommodate students? Offers 2 aids for 48 students and 2 for 54 students. Open 7a – 9p.

» Has the number of computer science (CS) faculty grown at comparable rate in relation to CS students? Answer: the results vary by campus.

Suggestions

» To reduce costs in astronomy classes, use learning assistant get academic credits and not salaries, because students would probably act as learning assistants for no pay. Reaction indicated that the CSU collective bargaining unit says students may not act in instructional mode without pay and thereby displace faculty.

» Create clusters of faculty in boutique groups in physics and astronomy and try to scale this concept across CSU

» Drawing in non-majors may help contribute to solving shortages

» To deal with cultural demographics for developing real-data experiences, let students identify their own projects that interest them. Build on students learning in class and bonding over each learning experience.
Observations

» Studios are not replacing workshops

» Interesting that research has indicated only one major does not require computing skills: acting

» One campus offers $13,000 for Learning Assistant (LA) stipends, while others provide $7000 per class; several funding sources are available but LAs are the best deal

» Google’s problem: fewer than 20% of tech employees are female. Some cause for optimism: currently, half of the CS students are female.*
SESSION 2 PRESENTATIONS

HSI-STEM AND BUILD

Exchanging the System-wide Impact of the HSI-STEM Grant
By: Erika Baldwin

Leveraging HSI-STEM Grant Funding for Student Success and Institutional Change at CSU Channel Islands
By: Philip Hampton

High Impact Practices for STEM Student Success: Building, Sustaining, and Assessing Undergraduate Research Opportunities in STEM
By: Heather Haega

Transfer Excel Learning Community
By: Eric Marinez

Undergraduate Research Training Program
By: Gabriela Chavira
Examining the Systemwide Impact of the HSI-STEM Grant

Erika E. Baldwin, Ph.D.
Project Director, Center for Evaluation and Educational Effectiveness (CEEE)
California State University, Long Beach
Erika.Baldwin@csulb.edu

HSI-STEM systemwide
- Department of Education HSI-STEM grant, 2016-2021
- 10 campuses: PIs, Evaluators, Project Directors
- CEEE: Project Director, Graduate Assistants
- CO: Assistant Director for Program Analytics, Special Consultant
Campus HSI-STEM programs

<table>
<thead>
<tr>
<th>Campus</th>
<th>Admissions</th>
<th>Advising</th>
<th>Counseling</th>
<th>Scholarships</th>
<th>Diversity</th>
<th>Financial Aid</th>
<th>Learning Communities</th>
<th>Mentoring</th>
<th>Research</th>
<th>Student Support</th>
<th>Technology</th>
<th>Transfer</th>
<th>Internships</th>
<th>Support Staff</th>
<th>Service Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakerfield</td>
<td>x</td>
</tr>
<tr>
<td>Channel Islands</td>
<td>x</td>
</tr>
<tr>
<td>Chico</td>
<td>x</td>
</tr>
<tr>
<td>Fullerton</td>
<td>x</td>
</tr>
<tr>
<td>Humboldt</td>
<td>x</td>
</tr>
<tr>
<td>Long Beach</td>
<td>x</td>
</tr>
<tr>
<td>Monterey Bay</td>
<td>x</td>
</tr>
<tr>
<td>Northridge</td>
<td>x</td>
</tr>
<tr>
<td>San Bernardino</td>
<td>x</td>
</tr>
<tr>
<td>San Jose</td>
<td>x</td>
</tr>
<tr>
<td>Monterey Bay</td>
<td>x</td>
</tr>
</tbody>
</table>

Lessons from the 2015-2016 evaluation

- 7 campuses
- Program-level data is key!
- Unable to examine grant as treatment
Systemwide evaluation

Research Questions

1. What key variables are associated with Latino/Hispanic and/or low-income student success in mentoring programs, undergraduate research, and advising?

2. How do the CSU HSI-STEM projects impact Latino/Hispanic and/or low-income student success in mentoring programs, undergraduate research, and advising?

3. What practices and/or activities contribute to Latino/Hispanic and/or low-income student success in mentoring programs, undergraduate research, and advising?

4. What are the common programmatic, outcome, and evaluation designs observed across the CSU HSI-STEM grants?

5. What challenges and obstacles do HSI-STEM projects encounter in implementation of mentoring, undergraduate research programs, and advising, particularly with regard to practices and interventions?

6. What indicators and data points need to be collected to assess program improvement and impact in the future?

Methods & Activities

Quantitative

- Mentoring
- Undergraduate research
- Advising
- Analysis of program-level data

Qualitative

- Interviews (PIs, evaluators)
- Site visits
- Focus groups (students)
- Reports

Meetings

- AHSIE (spring)
- HSI-STEM Summit (summer)
- Teleconferences throughout the year
Outcomes

- Improved outcomes for Hispanic/Latino and low-income students
- Improved efforts in providing equitable education
- Greater look into impact of activities on students
- Increased collaboration across campuses
- Institutionalized programs, policies
- Data-driven decision-making for GI 2025

Thank you!

Erika E. Baldwin, Ph.D.
Project Director, Center for Evaluation and Educational Effectiveness (CEEED)
California State University, Long Beach
Erika.Baldwin@csulb.edu

HSI-STEM presentations
Tomorrow 11:00am
Eric Marinez, CSU Long Beach
Amy Sprowles, Humboldt State
The CSU 2017 STEM Conference
August 10-11, 2017

Leveraging HSI-STEM Grant Funding for Student Success and Institutional Change at CSU Channel Islands

Phil Hampton
Interim Dir. of Educational Partnerships
CSU Channel Islands
Philip.Hampton@csuci.edu

- Project ACCESO
 - 10/1/11 – 3/31/17
- Project PROMESAS
 - 10/1/16 - present

Project ACCESO
Achieving a Cooperative College Education through STEM Opportunities

- Creation of the STEM Center
- STEM Scholar Positions
- Student Success Services
 - PLTL & Tutoring
 - Academic Coaching
- Summer & Academic Year Research
- Summer Scholars Institute
- STEM Outreach
Project PROMESAS

Pathways with Regional Outreach and Mathematics Excellence for Student Achievement in STEM

- **Activity #1:** Transforming Mathematics Pathways
 - STEM Service Courses (SSC) Initiative
 - Cultural transformation
 - Inclusive pedagogy at CI and CC
- **Activity #2:** Strengthening the STEM Student Success Pipeline
 - STEM Student Success Services
 - STEM Pipeline

Peer Coaching

- Research:
 - Bettinger: WWC Evidence of Promise, improved 6 - 24 month retention
 - Franklin: improved student performance at 12 & 18 mo.
- STEM Success Learning Community
- Social emotional learning, self-efficacy, growth mindset, resiliency
- Embedded Peer Mentors
- Psychosocial support

The long-term independently assessed benefits of coaching: A controlled 18-month follow-up study of two methods

John Franklin & Alicia Franklin
Summary

- HSI STEM funding has transformed and continues to transform the CI campus: Best practices interventions have been found to be paid student assistant positions, providing student support services, and creating a physical “home” for STEM majors on the CI campus.

- Peer-Led Team Learning and Peer Coaching: Approaches involving near-peer mentors/coaches seem promising for supporting success in STEM.

Contact Us:
PROMESAS Project Director; Araceli.Espinoza-Wade@csuci.edu
Activity Directors: Philip.Hampton@csuci.edu & Cindy.Wyels@csuci.edu
High Impact Practices for STEM Student Success: Building, Sustaining, and Assessing Undergraduate Research Opportunities

Dr. Holly Unruh, Associate Director
Dr. Heather Haeger, Assessment and Educational Research Associate
Undergraduate Research Opportunities Center: CSU Monterey Bay
hunruh@csu.edu, haeger@csu.edu

"Undergraduate research and creative scholarship activities represent one of the stronger examples of a high-impact learning practice that can advance the key characteristics of the University’s mission.

Mentored research, in which students and faculty work together to discover new knowledge, apply it to their discipline, and share it locally, nationally, and globally, is instrumental in helping individuals think analytically, question critically, and discover the enduring joy of inquiry.

Undergraduate research simultaneously strengthens undergraduate education, provides additional outlets for faculty to teach, research, and serve; and fosters the creation of a community of scholars that is essential to the intellectual health of the university.”

California State University Monterey Bay’s Undergraduate Research Opportunities Center

As the first centralized undergraduate research office in the CSU system, UROC began with a 3-year pilot program in 2009 and has grown into a robust center with nearly 100 student research assistants in 2017.

Key activities include:

- UROC is a resource center providing information about research opportunities, fellowships, and graduate school preparation.
- Professional and research skills workshops for students.
- Peer-to-peer programs in science and research writing.

Key awards include:

- California State University Monterey Bay's Undergraduate Research Opportunities Center (UROC) program
- California State University Monterey Bay's Undergraduate Research Opportunities Center (UROC) program.
- California State University Monterey Bay's Undergraduate Research Opportunities Center (UROC) program.
- California State University Monterey Bay's Undergraduate Research Opportunities Center (UROC) program.
Campus investment makes this happen

- **Institutionalization** of many key staff positions
- Physical and online space for resources
- **Campus commitment** to supporting high impact practices, including research, scholarship and creative activities
- **Campus recognition** of faculty mentorship role in RTP process, annual research mentor award, and stipend for serving as research mentor
- **Infrastructure and support** for both faculty research, and institutional grants that support high impact practices including undergraduate research both in and outside the classroom

Assessment: What do we care about?

Student Development:

We are examining how curricular changes, student support services, writing interventions, type and quality of mentoring, and experiences in research impact students’ self-efficacy, identity, academic achievement and aspirations, and leadership.

Models for Effective Practices:

We are also exploring how distributed research placements, cohort development, mentor training, community involvement, collaboration between institutions, and scaffolding levels of programmatic interventions can engage traditionally underrepresented students and foster rigorous research experiences for students from community colleges, primarily undergraduate institutions, and minority serving institutions.

Assessment: What do we measure?

- Student Success (GPA, retention, graduation, and post-graduation employment and education)
- Pre- and Post-research Surveys
- Faculty-Members Assessment
- Senior Interviews
- Focus Groups
- Written reflections and blog posts
- Alumni Survey and Interviews
Assessment: What have we found — that is both meaningful and measurable? How do we engage in the national dialogue about High Impact Practices?

- **Student Outcomes:**
 - 3.4 graduating GPA significantly higher than like peers (Hoeger & Fresquez, 2016)
 - 74% graduation rate for LSAMP and UROC students
 - Successful applications to scholarships and fellowships (e.g., 20 NSF GRFP recipients)
 - 75% enrollment in grad school and 100% 2nd year grad school retention for McNair alumni
 - Higher first-gen, URM, and low-income student participation than national trends (Hoeger, BerkoLorenz & Webber, 2015)

- What increases the impact of URM?
 - Time spent in research
 - Faculty mentoring engagement
 - Programmatic support for researchers

Next Steps: Multi-campus collaboration and data sharing
- Council on Undergraduate Research
 - Assessment and Research Coordinator
STEM EXCEL Transfer Learning Community

Eric Martinez, Ph.D.
Program Director HSI-STEM Sí Puedo
California State University, Long Beach
eric.marinez@csulb.edu

STRENGTHENING THE IMPACT BY PROVIDING UNDERGRADUATE EDUCATIONAL DEVELOPMENT OPPORTUNITIES

Funded by the U.S. Department of Education HSI STEM & Articulation Programs; Award #: P031C180085

October 1, 2019 – September 30, 2021

STEM Excellence through a Community of Engaged Learners (EXCEL) Transfer Learning Community

Program Overview
- One-semester learning community
- Composition of LC:
 - Introductory course (NSCI 390)
 - Focuses on Academic, Professional, and Career Development
 - Offers "shadow section" for peer mentoring and tutoring
 - One-on-one meetings with peer mentor (5 per semester)
 - Student success workshops
- Anticipated Impact
 - 50 students annually (2 sections)
 - Increase good academic standing
 - Increases in GPA
 - Social Belonging
 - STEM Identity
Recruitment
Summer Bridge to The Beach

Program Overview
- Nine-week summer research and transition program
 - Full-time research with CSULB faculty
 - One week orientation and training
 - Weekly professional development workshops
 - Travel to a STEM conference to present research
- Targets incoming transfer students to connect and facilitate their transition to CSULB

Anticipated Impact
- 25 students annually
- Increased research knowledge, skills, and ability
- Increase good academic standing in the first year
 - From former grant, 72 out of 74 (97%) still remain in a STEM program (7 switched to another STEM major)

19 or 25.6% have graduated as of F16; need spring 17

Recruitment
STEM Transfer to the Beach Orientation

Program Overview
- STEM specific transfer orientation to connect students to CSULB and mitigate first semester transfer shock
- Five hour orientation includes:
 - Advising workshop to prepare for SOAR and the fall semester
 - Visit offices and meet representatives from college and university student services
 - Meet representatives from student organizations
 - Learn about research opportunities

Anticipated Impact
- 75 students annually
- Increased awareness and use of campus services and resources
Summary of my talk

• **Summary point 1:** A Transfer Learning Community has been designed to target incoming transfer students primarily recruited from a Summer Bridge to the Beach research program and a STEM Transfer to the Beach Orientation

• **Summary point 2:** It is expected that the Transfer Learning Community will positively impact students’ academic standing, thus increasing persistence and 3-year transfer graduation rates and increase sense of belong and STEM identity
The BUILD Effect: Transforming Science Research Training in the CSU

2014 – 5 Year BUILD Awards
$1.5 Billion (over $60M to CSU Campuses)
Diversity Program Consortium (DPC)
10 Building Infrastructure Leading to Diversity (BUILD)
Coordination and Evaluation Center (UCLA)
NRMN (National Research Mentoring Network)

Goal: to develop novel approaches that move the needle in order increase the number of scientists from diverse communities to pursue and stay in biomedical research careers.
Interventions:

Student level - Curricular modules that affirm student interests and values are integrated into science courses, and training opportunities enable students to participate in "giving back" research experiences.

Faculty level - Through collaboration, faculty transform classroom and research environments at the partner institutions into intellectually safe spaces for all science students by working to eliminate triggers of threat and affirming their experiences.

Institutional level - SF BUILD mitigates stereotype threat by promoting contextual changes in classrooms and research environments to enable students and faculty from underrepresented groups in science to thrive.
Following Think-Pair-Share, report answers of 3 participants on board, “Experience, how it felt, and what was outcome.” Then tell participants with regard to answers “There are no right or wrong answers.” While all are examples of underperformance, only some may be outcomes of ST. Some map and some don’t. “Let’s see which do based on literature.”
SESSION 2 DISCUSSION
HSI-STEM AND BUILD
ISSUES TO ADDRESS

» We will need more than 5 years for the BUILD process to become effective, so we need to investigate and plan for how the Chancellor’s Office (CO) could help with renewal.

» Must deal with the CSU culture: students do not want to go more than 150 miles away from home, so have them connect for peer mentoring at regional institutions such as UC Berkeley, Stanford, etc.

» Need to concentrate on how to leverage system for integrating the three BUILD grants and extending tasks and results.

» Need to train faculty to be more racially sensitive.

» Need to teach faculty about race theory issues: some learn; some push back hard. Faculty need to learn first and then work with their students. There are issues among faculty of all races.

» Transfer leads to need for orientation: e.g., students do not understand that they cannot wait until the last week of the term to drop classes.

» Need to help faculty learn to establish rapport with students.

» Need to make it easier on websites for students to ID resources: as is, they must know the name to find information they seek.

» Challenges include financial aid for minority students and developing policies to reduce equity issues.
Suggestions

» Identify means to measure impact and success of HSI-STEM and BUILD programs

» Money is available for evaluation; coordinate it

» Focus on solution instead of problem: e.g., how do we make the atmosphere inclusive for everyone and how do we convert threats to positive and resources?

» Concentrate on how to share resources*

» Avoid having HIS-STEM and BUILD programs compete

» Provide stipends for people to participate in workshops

Observations

» Push for evaluation/accountability is complicated to assess impact because there are multiple factors

» All use AREA assessment tool

» STEM transfer orientation sessions differ on how to meet mentors and orientation duration

» For some campuses transfer orientation is mandatory and for some optional

» Orientation being mandatory has improved experience

» Transfer students are coming from very different places

Facts

» SFSU is the second-best financed NIH institution nationally

» CSU Stanislaus has been nominated for top 5 HSI STEM programs
SESSION 3 PRESENTATIONS
RESULTS OF HELMSLEY-FUNDED INSTITUTIONS

CSU STEM Collaboratives Findings from the 2014-17 Helmsley Grant
By: Ken O’Donnell

FUSE: Igniting Change Across Campus
By: Sharon Lanaghan

Supporting Undergraduates Through Collaboration, Care, and Empowerment to Succeed in STEM
By: Erica Wildy
CSU STEM Collaboratives
Findings from the 2014-17 Helmsley Grant

Ken O’Donnell
Interim Vice Provost
CSU Dominguez Hills
kodonnel5@csudh.edu

Grant Parameters

- Integration, not addition
- Degree production + culture change
- Coordination of HIPs
- Wearing of money
Participating CSUs

- Channel Islands
- Dominguez Hills
- East Bay
- Fresno
- Fullerton
- Humboldt
- Los Angeles
- Pomona

Findings

- Collaboration matters
- Integration is more important than individual program design
- Faculty are ahead of administrators in incentivizing and organizing for STEM student success
Summary

- **Consolidation is key**: we start with more than enough separate programs promoting STEM student success.
- **Details are available**: calstate.edu/stem
FUSE: Igniting Change Across Campus

Matt Jonas & Sharon Lanaghan
CSU Dominguez Hills
mjonas@csudh.edu
slanaghan@csudh.edu

FUSE Design

- First-Year Cohort had 167 students in 2015; 111 students in 2016
- Summer Experience designed to introduce STEM to students; provide opportunities for course advancement
- Redesigned Courses in Chem, Comp Sci, Math
- Interdivisional and interdisciplinary leadership team
The CSU 2017 STEM Conference
August 10-11, 2017

Data Driven Improvements

- Little impact at cohort level for 2015
- STEM 0 revised
- Summer Precalculus
- Course redesign success

Precalculus Redesign

<table>
<thead>
<tr>
<th></th>
<th>Redesign (n=503)</th>
<th>Non-redesign (n=257)</th>
<th>Historic (n=1609)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>82.9%</td>
<td>45.1%</td>
<td>75.8%</td>
</tr>
</tbody>
</table>

Intro to Chem

<table>
<thead>
<tr>
<th></th>
<th>PLTL (n=189)</th>
<th>non-PLTL (n=264)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70.4%</td>
<td>55.2%</td>
</tr>
</tbody>
</table>

Intro to Programming

<table>
<thead>
<tr>
<th></th>
<th>Redesign (n=23)</th>
<th>Non-redesign (n=33)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73.9%</td>
<td>52.8%</td>
</tr>
</tbody>
</table>

Sustaining Incoming Student Success

Institutional supports to continue FUSE activities:

- Funding for course redesign components
 - Instructional Student Assistants (Math and CS)
 - Course Coordinator (Pre-Calculus)
- Funding for summer bootcamps for College Ready STEM Majors
- Improved relationships and communication between key players in freshmen success
Data and teamwork

- Data informed our improvement
- Evidence of success can lead to lasting change
- By working across divisions, we were able to achieve more and learn more.
Cultivating SUCCESS at Cal State East Bay

Support of Undergraduates through Collaboration, Caring, and Empowerment to Succeed in STEM

Erica L. Wildy*, Caron Inouye, Danika LeDuc, Alison Richardson, Elizabeth Yeager
California State University East Bay
erica.wildy@csueastbay.edu

THE CSUEB SUCCESS PROGRAM
Current Program Design

• **Keys to SUCCESS**
 - Inter-programmatic grant team
 - Leveraging existing resources

• **Participating Students**
 - Freshmen
 - Underrepresented in STEM*
 - First generation*
 - Can be affiliated with other student support groups
 - Opt in to the program
 - Sign a contract
 - Are SUCCESS Scholars

• **Mission:** to increase rates of retention, persistence, and graduation of STEM majors
THE CSUEB SUCCESS PROGRAM
Current Program Design

• Summer Bridge (current design)
 – Integrated with SEAS Welcome Event
 – Two days
 – Mini workshops
 – Freshman Convocation

• First Year Experience
 – Freshman Learning Clusters:
 a) Diversity of Life (existing)
 b) STEM Pathways (new!)
 • General Studies (GS) Courses
 • (remedial) Math, English; GE courses
 • Discipline (i.e., science) course
 – Academic Support

Fig. Freshman Convocation 2017.

Fig. SUCCESS Scholars hard at work in biology lab!

THE CSUEB SUCCESS PROGRAM
Current Program Design

• Case Management
 – Primary counselor (SEAS, SUCCESS)
 – Peer mentors
 – AACE, GS Coordinator
 – CSCI Success Center

Fig. Peer mentor assisting students.

• Workshops
 – Two per quarter
 – Information on academics, finances, careers, etc.

• Volunteering
 – One per quarter, min. two hours
 – Opportunities on or off campus
 – Cultivates leadership/networking skills,
 sense of civic duty, self-confidence

Fig. Weed removal at Middle Harbor Shoreline Park, Port of Oakland.
THE CSUEB SUCCESS PROGRAM
Findings from Cohort II

- **SUCCESS vs. Non-SUCCESS Scholars:**
 - ↑ learning gains on pre-post tests
 - ↑ avg final grade for biology course
 - ↓ # repeatable grades for bio course
 - ↑ retention in cluster, Fall to Winter
 - More found SI to be useful

![Fig. Ethnicity and Gender breakdown of SUCCESS participants in Fall 2016, N= 45](image)

NEXT STEPS FOR SUCCESS
Scaling The Program

- **No-Cost Extension Approved!**
 - There will be a **Cohort 3**!
 - Program updates:
 - proactive recruitment
 - **Successful Scholar Incentive Program**
 - enhanced Summer Experience
 - strengthened program identity

- **Moving Forward with Institutional Support**
 - STEM Pathways FrLC formalized
 - Support/expansion of the SI Program
 - FELI Training for key faculty and staff

- **Next Steps**
 - Institutionalization of key elements
 - Expand collaborations

![Fig. SUCCESS Scholars in an SI session.](image)
SESSION 3 DISCUSSION
RESULTS OF HELMSLEY-FUNDED INSTITUTIONS
Issue to Address

Low rates of under-represented males: males who cannot become a doctor go into business; they lack family support for studying science

Suggestions

» Strategies for sustainability: More money in the first year and less in Year 2

» Hire graduation czar or student-success person to 1) gather staff and break down silos and 2) look for resources

» Avoid expanding until we get program elements right; getting people to work together pools resources and promotes sustainability

» Concentrate on how CO can help prepare for and support grant repeats and sustainability*

» Ask open question about how you identify instead of having them check the box

» Sustainability: seek to pool resources and record results for libraries and webinars for posterity*

» Pay for a resource to help students find the resources

» Keep looking for funding after one grant ends because you are not likely to obtain institutional funds

» Ask ourselves: what are we doing that we could stop doing?

» To break down silos and encourage faculty-staff collaboration, deal with the respect issue*
Observation

» CSU saves money if students do not repeat courses
» Mentors benefit more than mentees, especially peer mentors
» SUCCESS program volunteering leads to leadership and sense of commitment and success
» Students have different paths depending on which STEM field they are in: need different degrees to be ready for hiring—CS and engineering can start after B.S. degree; math and science cannot
» CS and engineering have very few women*
» Grant evaluation showed that faculty were ahead of administrators
» For English as a Second Language, use an asset model—this person knows two languages instead of saying “This individual is less proficient in English than a native speaker.”
KEYNOTE PRESENTATION
DAY 2, AUGUST 11, 2017

Collectively Improving Our Science Teaching: Department-wide Efforts in Scientific Teaching that Produced Classroom Transformations, Scholarly Publications, and Unanticipated Benefits
By: Kimberly Tanner
Collectively Improving Our Science Teaching:

Department-wide Efforts in Scientific Teaching that Produced Classroom Transformations, Scholarly Publications, and Unanticipated Benefits

Kimberly D. Tanner
Professor of Biology, Director of SEPAL
San Francisco State University
tanner@sfstate.edu

Meet a new colleague!
And share...

What motivates you to do the work you do in science education?
– in K-12 science education?
– undergraduate science education
– science education research

A brief story about why I took a job in the CSU in 2004...
Ideas that Drive SEPAL Efforts

- Twice as many undergraduates leave the sciences as the humanities in the U.S.
- Women and scientists of color continue to be underrepresented in the sciences
- Few scientists have formal training in effective teaching
- Change will require large numbers of faculty to make (small) changes in teaching, iteratively

Engaging Science Faculty in Pedagogical Change

- Make a prediction!

 * Context: biology department of ~60 instructors – 40 tenured and tenure-track and ~20 long-term lecturers –

 A. 0%, or just you and a couple of friends, Kimberly
 B. ~30%, just the Lecturers
 C. ~50%
 D. ~85%
 E. 100%
Engaging Science Faculty in Pedagogical Change is Possible

- >80% biology faculty participated in >100 hours scientific teaching professional development
- Moving away from a faculty deficit model
- Moving away from small numbers of departmental heroes
- Moving towards engaging ALL faculty as change agents

<table>
<thead>
<tr>
<th>Biology Faculty</th>
<th>Total (in)</th>
<th>Scientific Teaching Institute Participation %</th>
<th>Follow Up Program 2013-2014 Participation %</th>
<th>Follow Up Program 2014-2015 Participation %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>62</td>
<td>89% (55/62)</td>
<td>84% (36/43)</td>
<td>81% (39/48)</td>
</tr>
<tr>
<td>Tenured/Tenure-Track</td>
<td>39</td>
<td>90% (35/39)</td>
<td>85% (22/26)</td>
<td>89% (25/28)</td>
</tr>
<tr>
<td>Lecturer</td>
<td>23</td>
<td>87% (20/23)</td>
<td>82% (14/17)</td>
<td>70% (14/20)</td>
</tr>
</tbody>
</table>

To what extent is this happening in your context? What would enable this in your context?

But what is Evidence of Change Happening in Classrooms?

- Faculty reflections and surveys
- Comparison to non-participating instructors
- Repeated student surveys on frequency of active learning
- Faculty resource requests and use
- But what about direct classroom measures of teaching?

"In my 4th year at SF State, I have seen a huge improvement in the equity climate in my science learning...using this semester as an example, most of my biology classes operate in similar ways that feel more equal than semesters before. In 3 of my 5 classes, we use name cards with reflections. We use clickers, and we perform a lot of think-pair-shares. All 3 instructors actively try to connect our learning to outside world examples (via clinical scenarios, jokes, cartoons, articles, etc.), and instructors are really trying to encourage students not to be afraid of the material, to try endless number of ways to learn the material (post videos, animations, practice problems, practice exams, etc.), and to understand concepts, not memorize details." — SF State Biology Undergraduate Student, Fall 2013
Measuring Scientific Teaching
To what extent are instructors doing anything but lecture?

DART: Decibel Analysis for Research in Teaching

Jeff Schinske, MS
Foothill-De Anza Community Colleges

Shannon Seidel, PhD
Pacific Lutheran U.

Melinda Owens, PhD
San Francisco State U

Mike Wong, PhD
San Francisco State U

What can we learn about classrooms from the noise?

- Make a prediction!
- What do you predict is happening in the audio recordings of these two lecture class sessions?
- NOTE:
 - X-axis is TIME
 - Y-axis is DECIBELS

Class Session A

Class Session B
DART—Decibel Analysis for Research in Teaching Tool

Machine learning-based algorithm that classifies classroom activities with ~90% accuracy as...

- **Single Voice** (e.g., lecture, question and answer)
- **Multiple Voice** (e.g., pair, group, jigsaw discussions)
- **No Voice** (e.g., minute papers, clicker thinking)

Evidence of Faculty Implementation of Active Learning Pedagogies

- **Make a prediction!**
- What proportion of courses analyzed had active learning...
 - in *EVERY* class session?
 - in at least HALF of class sessions?
Evidence of Faculty Implementation of Active Learning Pedagogies

- 1 out of 5 courses had some form of active learning EVERY class session
- 4 out of 5 courses in HALF of class sessions
- What would this look like next year? In different science disciplines? On your campus?

Community-Based Research Publication
PNAS, March 2017

- Involved 81 co-authors
- Over 24 institutions
- Provisional patent filed
- Called a game changing tool for higher education...
Introducing dart.sfsu.edu for your use...

Conclusions and Future Directions

- All arenas of science education – K-12 science education, undergraduate science education, and science education research – are overlapping and intertwined.
- Large numbers of science faculty can be engaged in professional development in scientific teaching.
- DART – Decibel Analysis for Research in Teaching – enables large-scale, cost-effective, and regular monitoring of the extent to which evidence-based teaching practices occur in science courses.
- How might DART be used to document the added value of your own projects, teaching practices across the CSU, and the added value of a CSU education?
Acknowledgements
Postdocs & Undergraduate Researchers
Gloriana Trujillo
Shannon Seidel
Colin Harrison
Melinda Owens
Mike Wong
Susanne Lietz
Shangheng Sit
Zahir-Saleh Subedar
Travis Bejines
Joseph Perez
Amanda Reggi
Katie Lam
Kristin Liang
Alicia Escobedo

CCB FEST and Biology FEST
Instructor Collaborators!
Georgia Acker, Susan F. Akana, Bradley J.
Balukjian, Hilary Benton, J. R. Blair, Segal Boaz,
Katharyn E. Boyer, Jason Bram, Laura W.
Burrus, Dana T. Byrd, Natalia Caporale, Edward
J. Carpenter, Y.-H. Mark Chan, Lily Chen, Amy
Chovnick, Diana S. Chu, Bryan K. Clarkson, Sara
Cooper, Catherine Creech, Karen D. Crow, José
R. de la Torre, Wilfred F. Denetclaw, Kathleen
Duncan, Amy Edwards, Karen Erickson,
Megumi Fuse, Joseph Gorga, Brinda Govindan,
L. Jeanette Green, Paul Hankamp, Holly E.
Harris, Zheng-Hui He, Stephen Ingalls, Peter
Ingmire, J. Rebecca Jacobs, Mark Kamakea,
Rhea R. Kimpo, Jonathan Knight, Sara K.
Krause, Lori Krueger, Terrye Light, Lance Lund,
Leticia M. Márquez-Magaña, Briana McCarthy,
Linda McPherson, Vanessa C. Miller-Sims,
Christopher Moffatt, Pamela C. Muick, Paul H.
Nagami, Gloria L. Nusse, Kristine Okimura, Sally
G. Pasion, Robert Patterson, Pleuni S. Pennings,
Blake Riggs, Joseph Romeo, Scott W. Roy,
Tatiane Russo-Tait, Lisa Schultsbes,
Lakshmilata Sengupta, Rachel Small, Greg S.
Spicer, Jonathon H. Stillman, Andree Swei,
Jennifer M. Wade, Steven B. Waters, Steven L.
Weinstein, Julia Willsie, Dia Wright.
SESSION 4 PRESENTATIONS
TRANSFORMING THE ENGINEERING CURRICULUM

Student Preparation for Introductory Physics for Engineering Majors: Data from a Preparatory Course at SJSU
By: Monica Kress

An Integrated First-Year Experience in Engineering and Computer Science: FYrE@ECST
By: Emily L. Allen

Transformational Learning in Engineering: Four Essential Conditions
By: Linda Vanusupa

Strategies to Engage Students in Engineering Mechanics Courses
By: Mariappan Jawaharlal

The Ripple Effect of a Holistic Scholarship Program to Advance Inclusivity in STEM
By: Lizabeth Schlemer and Kathy Chen
Physics 49: Results from a Preparatory Course at SJSU

Monika Kress, Professor and Chair
San Jose State University
Monika.Kress@sjsu.edu

Calculus-based physics: a major hurdle for STEM majors

- Physics is recognized by universities nationwide as a “weedout course” for many engineering and physical science degree programs
- Success in Physics = more likely to persist, and graduate sooner
- At SJSU, we introduced Physics 49: a prep class for Physics 50 to improve success in engineering & physical science, and narrow achievement gaps
- Students who opt to take Physics 49 have better outcomes in 50; the good effects follow them beyond
- All HIP’s help: Workshops, flipped-classroom, interactive engagement, etc. but high fail rates and achievement gaps persist
- Cause-and-effect relationships: Prep class helps, or “good” students opt to take it?
Physics 49: Why the high fail rate?

- 1/3 got A's and B's!
- Those who got DFW came into the course with a LOT of predictors: previous DFW, remediation, pre-calculus
- Almost anyone can take the class (pre-req = pre-calculus, not enforced)
- Maturity level, classroom etiquette, relying on high school skills, vs building and growing beyond them
- “I know this already”, “I don’t need to study” vs. growth mindset
- Not aware of/able to invest time in STEM studying
- Roster for 49 is not a representative of 50: extremes are over-represented

Physics 49 -> 50: Results

- The D/F/W rate in Physics 50 usually ~ 30%, comparable to nationwide trends and other lower-division STEM at SJSU
- Spring 17: 16% of students in Physics 50 took Physics 49 in Fall 16 (33/200)
- DFW rate of ~10% for those who got C or better in 49 got C or better in 50 (vs. ~30% for whole class)
- Their average grade in 50 is comparable to class average (~2.5).
- 2/3 got within a letter grade of 49
- Those who dropped by letter grade or more all started SJSU in remedial math or Pre-calculus and/or had history of D/F in STEM
Solutions, outcomes, continuing issues

- **Prep class helps**: and it identifies struggling/low-achieving/at-risk students; more gradual transition to engineering curriculum
- **Flipped classroom helps**: but it helps well-prepared students the most
- **Students fail for different reasons**: identify much sooner those who need to improve STEM study skills; early intervention
- **CSU 120 unit limit and “Finish in 4”**: strong disincentive to take prep classes and workshops; disenfranchise those who need a “transitional semester” or who can’t study 40 hours/week
- **Intrusive advising**: intensive intervention upon first DFW, or redirect students out of STEM sooner to prevent drop-out or DQ.
An Integrated First-Year Experience in Engineering and Computer Science: FYrE@ECST

Dr. Emily L. Allan
Dean, College of Engineering, Computer Science, and Technology
California State University, Los Angeles

Major contributors to the project 2013-17:
Deborah Won, Gustavo Menezes, Adel Sheriff, Arturo Pacheco-Vega, Mark Tufenkjian, Frances Hidalgo, Eva Schiroming, Chengyu Sun

Fall 16 ECST undergrad demographics & 3000 majors

Accelerating Student Success at ECST

ECST offers a range of programs to recruit and support students as they begin their ECST journey, with the goal of preparing them to successfully complete their degrees and speed ahead into their STEM career.
FYrE@ECST

- $250K, Helmsley-funded pilot, part of CSU STEM Collaboratives
- Cohorts selected after STEP (calculus & physics)
- New Introduction to Engineering and Technology (Engr 1500)
- Supplemental Instruction model adopted
- Mathemagics
- New advising platform – Golden Eagle Flight Plan
Next steps

- Initial FYrE 16 cohort analysis
- NSF IUSE Funding $469K, 2017-2020
- FYrE 17:
 - New Engineering Problem-Solving class to integrate math & physics
 - Adding Computer Science students with new CS 1010 class
 - FY Cohorts with Faculty Mentors
- Improved SI training and sustaining plan
- More communication with Math & Physics
We will tell you about a collaborative discovery process that lasted from 2009-2015. This was a research initiative around the question, “What does it take for faculty to innovate inside of systems that are optimized for something else?”

Incremental and transformational
Incremental is an extension of one’s existing world view. For example, incremental learning if you were a high-jumper would be that you could jump higher.

Transformational is shift identity – action outside habits
> When transformational learning has taken place, one is able to make conscious choices and take actions that are outside of one’s conditioned tendencies.

Examples:
In sustainability: Seeing climate change as something that needs to be fixed by more efficient technology (incremental) v. Seeing climate change as being directly linked to one’s own identity as a consumer.
(Who is responsible for unsustainability-Ellie joined an advocacy group on diversity at Cal Poly) and Lindsay identify change (inability v agency)
University within a university

Using the mechanism of Academic Freedom, we essentially created a university within a university. We spent two years planning and creating the collaborations needed across the campus and in the community (faculty, departments, support staff --registration, scheduling, community partners for projects). We then invited freshmen to enroll in a two-quarter sequence of courses that were linked.

The faculty (8 per year), were in communication about the courses and planning, but teaching existing GE courses. The students were simply taking courses that they would normally take in their majors. During the two quarters, students self-organized into project teams with community partners around a project involving sustainability, broadly defined.

The overarching themes were the four LEAP essential learning outcomes: Integrative & Applied Learning through authentic team projects; Intellectual and practical skills -- capacity for systems thinking; Focus on sustainability to gain knowledge of cultures and the physical world; Explore personal and social responsibility through community engagement.

- Freshman cohort
- Invitation self-selected
- All majors
- two quarters
- 2 or 3 courses together
- Instructors collaborating
- Community based projects
- Community level dialog
- University inside a university (small)
- Shared space

Numbers: 200 students; 59 majors; 23 community partners; 20+ faculty; 4 cohorts; 12 institutional research partners

We will tell you about a collaborative discovery process that lasted from 2009-2015.

This was a research initiative around the question, “What does it take for faculty to innovate inside of systems that are optimized for something else?”
A Resilient Academic Community

Example: Students success equal to the university: GPA, Retention

However, SUSTAIN students were twice as likely to declare and pursue Minors (change of majors) compared to quasi-control cohorts. Transformation as agents of change in learning

Example: About a third (faculty and students) reported personal transformation

Example: Starting Chemists without Boarders; Starting local non-profit for environmental science in the K-12; Running a successful divestment campaign at Poly; co-creating a diversity advocacy group that created campus-wide changes)

In terms of typical measures

Categories of qualitative change

Stories of students and faculty transformations

Transformation

42 projects

Graduates
4 Essential conditions: defy boundaries

- **Diversity**: Social identity and points of view—beyond traditional STEM
- **Shared commitment**: Larger than one's self interests
- **Community**: Egalitarian, and self organizing, supportive of autonomy
- **Love**: A quality of attention that honors the dignity of all
This illustration from a 14th-century manuscript shows Henry of Germany delivering a lecture to university students in Bologna. Artist: Laurentius de Voltolina; Liber ethicorum des Henricus de Alemannia; Kupferstichkabinett SMPK, Berlin/Staatliche Museen Preussischer Kulturbesitz, Min. 1233
Big Picture

- Provide context
- Connect to their class work
- Check if they see it
- Check if it is meaningful
- Share it often

Big picture for the course and for each topic and each detailed work
Provide context to learning – why we are doing what we are doing
Connect this to their work – Is it relevant
Check if they see the big picture – they may see something else
Make it meaningful

Strategies

- Story
- Interact
- Let them make mistakes
- Eye Level contact
- Make it meaningful
- Help reinvent the wheel
- Take on a bike tour

You need a drill to make a hole. What you really want is the hole but nobody sells the hole so you buy a drill.
The CSU 2017 STEM Conference
August 10-11, 2017

https://www.youtube.com/watch?v=0_huZTBt1cY
https://www.youtube.com/channel/UCD2BZiPZCD4f00rA/videos
http://www.cpp.edu/~mconline/
The Ripple Effect of a Holistic Scholarship Program to Advance Inclusivity in STEM

Lizabeth Schleme, Kathy Chen,
Professors, Engineering
California Polytechnic State University
lschleme@calpoly.edu, kcchen@calpoly.edu

CSU The California State University
2017 CSU STEM Conference

PEEPS scholarship

- Two cohorts
- 13 students
- $10,000/year for 4 or 5 years
- Cohort course scheduling
- Study sessions
- Social Events
- Mentoring
Ripple effects

Cultural change

Outreach training

CSU STEM VISTA

Learning from small “n”

Cohort Scheduling

Examining Bias

Messaging

CSU STEM VISTA

- 4th year
- Four VISTA’s on Campus
- Incredible, passionate, hardworking
Systemic

• Bias
• Messaging

Practice

• Research methods
• Cohort forming
• Training
SESSION 4 DISCUSSION
TRANSFORMING THE ENGINEERING CURRICULUM
Session 4 presentations offered a diverse set of views on how to transform the engineering curriculum. All four pointed to the importance of active learning, engagement, and a sense of belonging that improve student performance.
SESSION 5 PRESENTATIONS
UNDERGRADUATE RESEARCH EXPERIENCES

NSF-Funded Intensive Summer Research Experiences for Undergraduates (REUs) in Mathematics
By: Oscar Vega

Summer Research Program for Undergraduates in UAV Technologies
By: Subodh Bhandari

Integrating Paper Microfluidics in the UG Curriculum: Course-Based UG Research Experiences
By: Frank Gomez

CSU ATLAS Program at Large Hadron Collider of CERN
By: Yongsheng Gao
NSF-Funded Intensive Summer Research Experiences for Undergraduates (REUs) in Mathematics

Oscar Vega
Associate Professor of Mathematics
Fresno State
ovega@csufresno.edu

What is an REU?

- 7-10 week long intensive research experience for students away from home.
- Students carry out research supervised by faculty, and collaborate among themselves.
- Requires the students’ full attention, 8-10 hours a day.

A research experience will

- validate and transform the undergraduate experience,
- provide insights into what grad school and the profession are like,
- build the students’ CVs,
- help students develop/improve professional skills (communication, writing, social, etc.),
- often provide students a support network for graduate school and beyond.
The NSF Program

- Usually a three-year grant.
- Items covered:
 1. student lodging for 7-10 weeks,
 2. stipends for students (usually $3500 to $5000),
 3. student travel (to and from site and to a conference).
- Very limited support for faculty mentors and PI (budget cuts at NSF have decreased the amounts of money for this dramatically... mentors get paid about half of what they would get teaching a summer class, the program director gets almost no salary).
- Sites do a national search to select participants.
- 60 REU sites (in mathematics) funded by NSF (five in the CSU system)

 https://www.nsf.gov/crssprgm/reu/list_result.jsp?unitid=5044

Pros and Cons for the CSU system

- Prestige: campuses seen as supportive of student research and as having faculty with research and grant-writing skills.
- Creates opportunities for CSU students via the REU network of directors and faculty.
- Helps the mathematical community broaden the pipeline for underrepresented students.
- Can help faculty with research, and with academic and professional growth.
- Lessons learned through hosting REUs can be helpful to building additional undergraduate research capacity on campuses.
- Full indirect costs go to the hosting institution.

Cons:

- Participants (students) are mostly not from the campus that hosts.
- NSF budget cuts have made REU programs unsustainable (faculty = volunteers)

A solution for both cons: institutional support (e.g., via foundation fund-raising)
Summary

• **Summary point 1**: REUs provide a unique experience to students, one that cannot be obtained in a regular course.

• **Summary point 2**: Having CSUs host REUs increases our system’s nationwide visibility.

• **Summary point 3**: REUs provide opportunities for underrepresented minority students to create a path towards advanced degrees in STEM.

• **Summary point 4**: Institutional support is needed to make these programs sustainable, and to afford more access to CSU students.
Summer Research Program for Undergraduates in UAV Technologies

Subodh Bhandari
Professor, Aerospace Engineering
Director, Unmanned Aerial Vehicles (UAV) LAB
Cal Poly Pomona
E-mail: sbhandari@cpp.edu

Motivation

- UAVs have potential to replace manned aircraft for dull, dirty, and dangerous (3-D) missions
 - Crop dusting and remote sensing for agricultural applications
 - Inspection of water leakage, chewed water lines
 - Geotechnical survey
 - Infrastructure monitoring
 - Oil and gas pipeline inspection
 - Power line inspection
 - Border patrol
 - Package delivery/freight services
- Widespread use of UAVs is expected to create hundreds of thousands of jobs
- More training and education is required to fulfill the workforce requirement of industry, Government, and academia
Summer Research Program

- Designed to motivate and expose undergraduates to research and research environment for 10 weeks.
- Started with 3 students in 2009 and has grown to 25 students in 2017.
- Includes students from community colleges and high schools.
- Provides opportunities for students to develop new knowledge and skills in the area of UAV technologies by means of hands-on learning.
- Focuses on increased readiness for industry career, motivation for graduate degrees, improved communication skills.
- Has been funded by: NSF (Research Experience for Undergraduates, REU, 2016-2019), AERO Institute/NASA Armstrong, McNair Scholarship Program, Community Colleges, California Space Grant Consortium, Other UROP’s.

10-Week Activities

- Research Environment
 - Multidisciplinary environment (Students and faculty supervisors from AERO, ECE, and CS departments)
 - Literature review
 - Research seminars
 - Professional development workshops (Graduate school applications, resume building, ethics etc.)
- Research Project Work
 - Research on the topic starting with literature review
 - Sensor and other hardware selection/integration
 - Experiment design
 - Simulation
 - Flight testing, data collection, data processing, analysis
 - Presentation at the end of the Program
Research Projects

- Research Focus of the UAV Lab
 - Increased autonomy of UAVs
 - Collision and obstacle avoidance
 - Autonomous navigation in indoor environments
 - Intelligent control
 - Research on widespread use of UAVs
 - Search and rescue in indoor and outdoor environments
 - Precision agriculture
 - 3-D Mapping

- Sample Summer Projects
 - Aircraft Parameter Identification using Flight Data
 - Modeling and Simulation
 - Collision/Obstacle Avoidance
 - Search and Rescue
 - 3-D Mapping using LIDAR
Integrating Paper Microfluidics in the Undergraduate Curriculum: Course-Based Undergraduate Research Experiences (CUREs)

Frank A. Gomez
Professor of Chemistry and Faculty Research Liaison
California State University, Los Angeles
tgomez2@calstatela.edu

Objectives and Goals

- Engage undergraduates in the interdisciplinary field of paper microfluidics in ENERGY, HEALTH, and ENVIRONMENTAL areas.
- Develop course-based undergraduate research experiences (CUREs) integrated into current laboratory courses.
- Focus on the design, development, and application of paper-based analytical devices (μPADs).

Goals

- Transform the first- and second-year chemistry and biology curricula to be research-intensive by developing, fostering, and adopting inquiry-based interdisciplinary laboratory experiments that integrate paper microfluidic fundamentals and protocols.
- Generate new knowledge in chemical and biological sciences through collaborative and transformative interdisciplinary faculty-student research projects in paper microfluidics.
- Increase the retention and graduation rates in STEM.
Broad Impact Across STEM Majors

Core Introductory Courses
- General Chemistry 1100/1110
- Introductory Biology 1100/1200
- Quantitative Analysis 3500
- Genetics and Cell Biology 3401

Requirement for other Programs
- Criminalistics
- Engineering
- Geology
- Kinesiology and Nutrition
- Physics

Outcomes
- Science and technology linked to real-world applications, problems, and societal needs.
- Students see learning science as worthwhile for solving problems in their daily lives.
- Students empowered by designing, creating, and discovering new devices.
- Faculty and students collaborate on important health-, energy-, and environmental-related worldwide problems.
- Students view themselves as scientists.
- Students position themselves as contributors to scientific body of knowledge.
- Interdisciplinary research on campus strengthened.
- Transformative and interdisciplinary research developed.
Summary

- **Summary point 1:** Transform the face of science.
- **Summary point 2:** Increase the pool of students graduating from and entering STEM-based workforces.
- **Summary point 3:** Increase students’ curiosity and self efficacy in STEM.
- **Summary point 4:** Develop a new paradigm for undergraduate STEM education.
The CSU ATLAS Program at Large Hadron Collider (LHC) of CERN

Yongsheng Gao
Team leader of CSU ATLAS program and CSU Fresno ATLAS program
Dept. of Physics, CSU Fresno
yogao@csufresno.edu

CERN: World Laboratory
~10,000 physicists from ~100 countries
Birth place of Nobel Prizes, World Wide Web

Nobel Prize 1984, 1992
WWW (1989)

LHC: 17 miles long, ~$10B
ATLAS: A Toroidal LHC Apparatus

ATLAS and CSU
• DOE/NSF: ~$250M, >$100M (upgrades)
• ~3000 physicists from 40 countries
• ~600 US physicists (~45 institutions)
• National Lab: ANL, BNL, LBNL, SLAC
• Harvard, Yale, MIT, Chicago, Columbia, Michigan, Stanford, UCs, UPenn, UW, ...
• Fresno State joined in 2007: Only CSU campus on ATLAS, home institution of CSU ATLAS (Sac State in 2014 and East Bay in 2017), authors in every ATLAS publication (~100 papers/year)
Higgs Discovery

- PL B715 (2012) 1 (7000+ citations)
- Fresno State: Only CSU campus involved in the Higgs discovery
- Fresno State ATLAS program: 1 faculty, 1 postdoc, 2 Ph.D students (Tsinghua, Shandong U.), 8 Master/undergraduates
- NSF support (~$2.9M with $537K indirect):
 - 3 EPP core, 1 MRI, 1 IRES, ATLAS annual membership fee (~$18K/Person/Year).
 - (Compete with R1 schools in Comparative Peer Reviews for EPP core grants)

Yongsheng Gao (Fresno State Physics)

CSU NUPAC

- CSU NUclear and PArticle Physics
 - Consortium (NUPAC): 17 campuses
 - Bakersfield, CI, Chico, DH, East Bay, Fresno, Humboldt, LA, LB, Northridge, Pomona, Sacramento, SB, SF, SLO, Sonoma, and Stanislaus
 - Fresno State (Center of NUPAC): Two online classes to NUPAC every year; Send students to CERN; Students work with ATLAS physicists (Chicago, LBNL, Stanford, SLAC, UCs, UW, …) at CERN

Yongsheng Gao (Fresno State Physics)

<table>
<thead>
<tr>
<th>Year</th>
<th>CSU students worked at CERN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>5 (Fresno)</td>
</tr>
<tr>
<td>2009</td>
<td>5 (Fresno: 4; Sac: 1)</td>
</tr>
<tr>
<td>2010</td>
<td>5 (Fresno: 2; LB: 2; Sac: 1)</td>
</tr>
<tr>
<td>2011</td>
<td>6 (Fresno: 4; Pomona: 2)</td>
</tr>
<tr>
<td>2012</td>
<td>5 (Fresno)</td>
</tr>
<tr>
<td>2013</td>
<td>6 (Fresno: 3; CI: 3)</td>
</tr>
<tr>
<td>2014</td>
<td>7 (Fresno: 5; CI: 2)</td>
</tr>
<tr>
<td>2015</td>
<td>7 (Fresno: 5; CI: 2)</td>
</tr>
<tr>
<td>2016</td>
<td>12 (Fresno: 6; CI: 1; Humboldt: 1; LA: 1; Sacramento: 2; Sonoma: 1)</td>
</tr>
<tr>
<td>2017</td>
<td>12 (Fresno: 4; CI: 1; Humboldt: 1; CSUN: 1; Sacramento: 3; San Francisco: 1; Sonoma: 1)</td>
</tr>
</tbody>
</table>

5 students/summer supported by a $250K NSF IRES (~$10K/student)
CERN Experience
- Talks at international ATLAS WG,
national/regional APS conferences, ...
- Admitted to Ph.D programs: Berkeley,
UCSD, UCSC, USC, Colorado, Iowa,
Maryland, Michigan, Washington, ...
Hamburg, CEA Saclay, HEPHY Vienna, ...

Summary
- Provide CSU unique ATLAS opportunity only available at ~45 R1 institutions
- Prepare CSU students for their personal and professional successes
- NSF support: ~$2.9M with $537K indirect; future opportunities (EPP, MREFC, ...)
- Pooling our manpower/resources to compete with R1 schools in CPR to grow
the program and NSF grants to benefit more CSU campuses and students

Yongsheng Gao (Fresno State Physics)
SESSION 5 DISCUSSION
UNDERGRADUATE RESEARCH EXPERIENCES
Issues to address

» A problem exists with restrictions on transfer students taking fully online courses; need to facilitate access for those students even though campuses have different rules about such courses.

» System-wide internships over the summer are challenging because many students are reluctant to travel more than 150 miles from home. Most internship applicants are white. NSF programs sometimes don’t work for student profiles such as those at CSU.

Suggestion

In addition to prestigious programs at locations such as Stanford and CERN that inspire students, implement High-Impact Practices (HIP) for other students.

Resources

» New trend: Pooling resources at CSU to compete effectively with R1 institutions*

» Get data on REUs at individual campuses and then pool resources
Observations

» Contrary to the usual trend of recruiting students who are the cream of the crop to participate in research projects, some faculty have involved “C” students, which in some cases motivates poorly motivated students.

» International Research Experiences for Students (IRES) can focus on CSU where Research Experiences for Undergraduates (REU) is national.

» A new program is for HSIs only.

» CSU campuses sometimes offer better skills to teach undergraduates than R1 institution.
SESSION 6 PRESENTATIONS
USING SCIENCE EDUCATION IN YOUR CLASSROOM

Investigating SFES-Science Faculty with Education Specialties — Across the CSU and the US
By: Kathy S. Williams

Computer Science and the Next Generation Science Standards: Building Silicon Valley Workforce Pipeline
By: Virginia Lehmkuhl-Dakhwe

Working Toward Inclusive Student Success in STEM Through Place- Based Learning Communities
By: Amy Sprowles

The Benefits of Creation of An Entrepreneurial Mindset in STEM Education
By: Shereazad Gandhi
Investigating SFES-Science Faculty with Education Specialties across the CSU and the United States

Kathy S. Williams
Professor of Biology
San Diego State University
kathy.williams@sdsu.edu

SFES - science faculty who take on specialized roles in science education within their discipline

Investigation of SFES in the CSU system

- SFES Active in all Arenas
- Hired as SFES or Transitioned to SFES roles
- Very Fulfilled by what they do

Science, 2008; CBE-LSE, 2011
tinyurl.com/sfes-pubs

Article

Investigation of Science Faculty with Education Specialties within the Largest University System in the United States

Seth D. Bush, 1* Nancy J. Pelizzi, 1 James A. Kuykendall, 2 Michael I. Stevens, 2 Kimberly D. Jaenzer, 1 and Kathy S. Williams 1

1 California Polytechnic State University, San Luis Obispo, CA 93407; 2 Stanford University, Stanford, CA 94305

* Corresponding author. E-mail: seth.bush@calpoly.edu (S.D. Bush); kathy.williams@sdsu.edu (K.S. Williams)

Received 12 February 2016; revised 25 April 2016; accepted 25 April 2016

Published online 30 May 2016

© The Authors 2016

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Nationally, SFES are a widespread, varied, and growing phenomenon

- Misalignments (Perceived reasons for hiring SFES vs. potential and actual contributions)
- Institution-type differences (Profile, Activities, Training, Funding)
- Not different by discipline (Biol., Chem., Geosci., Phys.)

PNAS, 2013 tinyurl.com/sfes-pubs

Widespread distribution and unexpected variation among science faculty with education specialties (SFES) across the United States

Seth D. Rush,?1, Nancy J. Pelazza,?1, James A. Rudd,?2, Michael T. Stevens,?1, Kimberly D. Tanner,?1, and Kathy S. Williams,?1,2

?Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407. ?Department of Biological Sciences, Purdue University, West Lafayette, IN 47907. ?Department of Chemistry and Biochemistry, California State University, Los Angeles, CA 90032. ?Department of Biology, Utah Valley University, Orem, UT 84087. ?Department of Biology, San Francisco State University, San Francisco, CA 94132. and Department of Biology, San Diego State University, San Diego, CA 92182.

What are the impacts and origins of SFES?

Interview Study

- Impacts: rich variety; influencing teaching practices of departmental colleagues
- Origins of positions:
 - differed by institution type (PUI, MS-granting, PhD-granting)
 - and by tenure-track vs. non-tenure-track status

Origins of Science Faculty with Education Specialties: Hiring Motivations and Prior Connections Explain Institutional Differences in the SFES Phenomenon

RESEARCH ARTICLE
Fostering Change from Within: Influencing Teaching Practices of Departmental Colleagues by Science Faculty with Education Specialties

Seth D. Rush, James A. Rudd, Michael T. Stevens, Kimberly D. Tanner, Kathy S. Williams
To summarize ...

- SFES are widespread and growing in numbers; **Identify yourself and join us!** We're all explorers in the field of STEM education.

- **Details of these studies**, including findings about impacts, and recommendations for hiring and supporting SFES are in our papers: *tinyurl.com/sfes-pubs*

- Keep your eyes open for an **invitation to Participate** in our upcoming 10-yr respective study of CSU SFES, and alert your colleagues too.

- Think of **one question** you have about the SFES phenomenon - **write it down** and catch one of us before you leave, or email it to us!
Computer Science and the Next Generation Science Standards: Building the Silicon Valley Workforce Pipeline

K. Virginia Lehmkuhl-Dakhwe PhD
University STEM Education Officer
San José State University
virginia.lehmkuhldakhwe@sjsu.edu

SJSU STEM Education

- Increasing the capacity of teachers to deliver effective instruction in STEM
- Inspiring and mentoring youth to enter and excel in the STEM career pipeline
- Inspiring and supporting SJSU students to mentor youth in STEM-related endeavors
Computer Science & the Next Generation Science Standards

- NGSS Science & Engineering Practices
 - Developing and Using Models
 - Analyzing and Interpreting Data
 - Using Mathematics and Computational Thinking
- Model Lessons

Model Lessons

- NGSS Performance Expectations (PEs) related to:
 - Life Science
 - Physical Science
 - Earth & Space Science
 - Engineering
- Means to integrate Computer Modeling, Data Analysis, & Computational Thinking into classroom instruction
Summary:

• **Summary point 1:** NGSS supports developing the K-16 Computer Science Pipeline and Science Instruction

• **Summary point 2:** Long-term Vision to provide all student access to rigorous instruction in Computer Science as part of their classroom instruction
Working Towards Inclusive Student Success in STEM through Place-based Learning Communities

Amy Sprowles, Assistant Professor of Biology
Matt Johnson, Professor of Wildlife
Co-Pi HS|STEM and HHMI IE’17
Humboldt State University
aes54@humboldt.edu
mdj8@humboldt.edu

HSU has Unique Challenges to Inclusive Student Success

• Most Remote and Rural of the CSUs
• Local culture is different from the familial homes of the majority of our students
 • >60% from Metropolitan regions 6hrs+ away
• HSU Six-year grad rate = 42%
 • 8% behind CSU average
 • Rate in STEM = 43%
• Gaps are greater for traditionally URS students:
 • 6 year URS graduation rate is 28%
 • 6 year URS STEM graduation rate is 20%
Can Place-Based Learning Communities Improve HSU Inclusive Success?

- Freshmen are clustered by major and participate in HIPs linked to a place-based theme (e.g. Klamath Connection)
 - Summer Immersion
 - Blocked Courses
 - Freshman Year Seminar
 - Peer Mentoring
 - Residence Life
- Qualitative and Quantitative assessments are employed to determine the impacts of PBLC programing on students sense of belonging, skills/attitudes, and academic achievements.

Relative to reference group, students in Klamath Connection had:

- Improved sense of belonging and community
- Increased gain of academic skills and attitudes
- Higher pass rates in Gateway courses
- Higher 1st year GPAs
 - 2.77 vs 2.47
- Lower rates of academic probation
- More earned units toward degree
- Higher 1st year retention in STEM and at HSU
 - 84% vs. 72%
HSI STEM and HHMI IE’17 Funding Will Allow Us To Offer PBLCS To ALL STEM Freshmen
The benefits of creation of an entrepreneurial mindset in STEM education

S. Jimmy Gandhi
Assistant Professor
CSU, Northridge
Email: sj.gandhi@csun.edu

What constitutes an Entrepreneurial Mindset?

- Technical Knowledge
- Clear Vision
- Passion & Dedication
- Ability to take risk and adopt to change
- Patience, Persistence and Learning from failures
- Planning & Management
- Communication; Talking to “customer”
- Opportunity identification
- Knowledge in Marketing & Promotion
- Knowledge in Finance
- Leadership & Decision Making

“E-STEM”
Why is it important in STEM Education?

- Skills are applicable to all fields of STEM
- Practical Application!! – Real world experience
- Better understanding of otherwise difficult material to understand
- Develops a “can-do” attitude
- Helps students succeed even if they are not good at “traditional education”
- Makes students eager to take on challenges

Who is it applicable to?
Summary of my talk

- Summary point 1: Identify which components of the entrepreneurial mindset you can incorporate into your curriculum.
- Summary point 2: Think of how you can introduce the concepts to the students and how to engage them with "hands-on assignments".
- Summary Point 3: Don’t forget a post survey to judge what worked and didn’t work for your curriculum.
Issue to address

Science Faculty with Education Specialties (SFES) thought they would change curriculum and teach courses others did not want to teach, but 40% leaving or considering because of disconnect on expectations. We need to work on finding suitable slots for the SFES staff.

Question

How did you improve students’ sense of identity? Do not distinguish among students, faculty, and staff.* Align participants by disciplines. Faculty hold student study sessions. All students do things together: summer sessions, live together, and take same courses.
ATTENDEE LIST
& CREDITS
Attendee List

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Role</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emily Allen</td>
<td>Los Angeles</td>
<td>Speaker</td>
<td>Eallen3@calstatela.edu</td>
</tr>
<tr>
<td>Lilian Audet</td>
<td>Chancellor’s Office</td>
<td>Attendee</td>
<td>laudet@calstate.edu</td>
</tr>
<tr>
<td>Erika Baldwin</td>
<td>Long Beach</td>
<td>Speaker</td>
<td>Erika.Baldwin@csulb.edu</td>
</tr>
<tr>
<td>Alison Baskit</td>
<td>Pomona</td>
<td>Attendee</td>
<td>aabaski@cpp.edu</td>
</tr>
<tr>
<td>Susan Baxter</td>
<td>Chancellor’s Office</td>
<td>Panelist</td>
<td>sbaxter@mail.sdsu.edu</td>
</tr>
<tr>
<td>Curtis Bennett</td>
<td>Long Beach</td>
<td>Attendee</td>
<td>curtis.bennett@csulb.edu</td>
</tr>
<tr>
<td>Subodh Bhandari</td>
<td>Pomona</td>
<td>Speaker</td>
<td>sbhandari@cpp.edu</td>
</tr>
<tr>
<td>Loren Blanchard</td>
<td>Chancellor’s Office</td>
<td>Speaker</td>
<td>lblanchard@calstate.edu</td>
</tr>
<tr>
<td>Seth Bush</td>
<td>San Luis Obispo</td>
<td>Attendee</td>
<td>sbush@calpoly.edu</td>
</tr>
<tr>
<td>Gabriela Chavira</td>
<td>Northridge</td>
<td>Speaker</td>
<td>gchavira@csun.edu</td>
</tr>
<tr>
<td>Kimberly Coble</td>
<td>San Francisco</td>
<td>Speaker</td>
<td>kcoble@sfsu.edu</td>
</tr>
<tr>
<td>William DeGraffenreid</td>
<td>Sacramento</td>
<td>Attendee</td>
<td>degraff@csus.edu</td>
</tr>
<tr>
<td>David Evans</td>
<td>Stanislaus</td>
<td>Attendee</td>
<td>devans@csustan.edu</td>
</tr>
<tr>
<td>Brian Foley</td>
<td>Northridge</td>
<td>Attendee</td>
<td>bfoley@csun.edu</td>
</tr>
<tr>
<td>Yongsheng Gao</td>
<td>Fresno</td>
<td>Speaker</td>
<td>yogao@csufresno.edu</td>
</tr>
<tr>
<td>Jimmy Gandhi</td>
<td>Northridge</td>
<td>Speaker</td>
<td>sj.gandhi@csun.edu</td>
</tr>
<tr>
<td>Frank Gomez</td>
<td>Los Angeles</td>
<td>Speaker</td>
<td>fgomez2@calstatela.edu</td>
</tr>
<tr>
<td>Heather Haeger</td>
<td>Monterey Bay</td>
<td>Speaker</td>
<td>hhaeger@csumb.edu</td>
</tr>
<tr>
<td>Philip Hampton</td>
<td>Channel Islands</td>
<td>Speaker</td>
<td>Philip.Hampton@csuci.edu</td>
</tr>
<tr>
<td>David Hassenzahl</td>
<td>Chico</td>
<td>Attendee</td>
<td>dhassenzahl@csuchico.edu</td>
</tr>
<tr>
<td>Mariappan Jawaharlal</td>
<td>Pomona</td>
<td>Speaker</td>
<td>jmariappan@cpp.edu</td>
</tr>
<tr>
<td>Brian Jersky</td>
<td>Long Beach</td>
<td>Attendee</td>
<td>brian.jersky@csulb.edu</td>
</tr>
<tr>
<td>Matt Johnson</td>
<td>Humboldt</td>
<td>Speaker</td>
<td>mdj6@humboldt.edu</td>
</tr>
<tr>
<td>Matt Jones</td>
<td>Dominguez Hills</td>
<td>Speaker</td>
<td>mjones@csudh.edu</td>
</tr>
<tr>
<td>Krista Kamer</td>
<td>Monterey Bay</td>
<td>Attendee</td>
<td>kkamer@csumb.edu</td>
</tr>
<tr>
<td>Katherine Kantardjieff</td>
<td>San Marcos</td>
<td>Panelist</td>
<td>kkantard@csusm.edu</td>
</tr>
<tr>
<td>Simon Kim</td>
<td>Long Beach</td>
<td>Attendee</td>
<td>simon.kim@csulb.edu</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Role</td>
<td>Email</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Alan Kiste</td>
<td>San Luis Obispo</td>
<td>Speaker</td>
<td>akiste@calpoly.edu</td>
</tr>
<tr>
<td>Monica Kress</td>
<td>San Jose</td>
<td>Speaker</td>
<td>Monika.Kress@sjsu.edu</td>
</tr>
<tr>
<td>Sharon Lanaghan</td>
<td>Dominguez Hills</td>
<td>Speaker</td>
<td>slanaghan@csudh.edu</td>
</tr>
<tr>
<td>Philip LaPolt</td>
<td>Dominguez Hills</td>
<td>Attendee</td>
<td>plapolt@csudh.edu</td>
</tr>
<tr>
<td>Andrew Lawson</td>
<td>Monterey Bay</td>
<td>Attendee</td>
<td>alawson@csumb.edu</td>
</tr>
<tr>
<td>Danika LeDuc</td>
<td>East Bay</td>
<td>Attendee</td>
<td>danika.leduc@csueastbay.edu</td>
</tr>
<tr>
<td>Virginia Lehmkuhl-Dakhwe</td>
<td>San Jose</td>
<td>Speaker</td>
<td>virginia.lehmkuhldakhwe@sjsu.edu</td>
</tr>
<tr>
<td>Yusheng (Christopher) Liu</td>
<td>Fullerton</td>
<td>Attendee</td>
<td>cyliu@fullerton.edu</td>
</tr>
<tr>
<td>Eric Marinez</td>
<td>Long Beach</td>
<td>Speaker</td>
<td>eric.marinez@csulb.edu</td>
</tr>
<tr>
<td>Leticia Marquez-Magaña</td>
<td>San Francisco</td>
<td>Attendee</td>
<td>marquez@sfsu.edu</td>
</tr>
<tr>
<td>Nancy McQueen</td>
<td>Los Angeles</td>
<td>Attendee</td>
<td>nmcquee@calstatela.edu</td>
</tr>
<tr>
<td>Christopher Meyer</td>
<td>Fresno</td>
<td>Keynote</td>
<td>cmeyer@csufresno.edu</td>
</tr>
<tr>
<td>Leroy Morishita</td>
<td>East Bay</td>
<td>Panelist</td>
<td>leroy.morishita@csueastbay.edu</td>
</tr>
<tr>
<td>Ken O’Donnell</td>
<td>Dominguez Hills</td>
<td>Speaker</td>
<td>kodonnel5@csudh.edu</td>
</tr>
<tr>
<td>San-June Oh</td>
<td>Fullerton</td>
<td>Attendee</td>
<td>sjoh@fullerton.edu</td>
</tr>
<tr>
<td>Ganesh Raman</td>
<td>Chancellor’s Office</td>
<td>Co-Organizer</td>
<td>graham@calstate.edu</td>
</tr>
<tr>
<td>Evonne Rayson</td>
<td>Chancellor’s Office</td>
<td>Attendee</td>
<td>erayson@calstate.edu</td>
</tr>
<tr>
<td>Steven Robinow</td>
<td>Chico</td>
<td>Attendee</td>
<td>srobinow@csuchico.edu</td>
</tr>
<tr>
<td>Sue Rosser</td>
<td>Chancellor’s Office</td>
<td>Co-Organizer</td>
<td>srosser@calstate.edu</td>
</tr>
<tr>
<td>Carrie Saetemoie</td>
<td>Northridge</td>
<td>Attendee</td>
<td>carrie.saetemoie@csun.edu</td>
</tr>
<tr>
<td>Lizabeth Schlemer</td>
<td>San Luis Obispo</td>
<td>Speaker</td>
<td>lschleme@calpoly.edu</td>
</tr>
<tr>
<td>Michael Scott</td>
<td>San Francisco</td>
<td>Attendee</td>
<td>mjscott@sfsu.edu</td>
</tr>
<tr>
<td>Maria Simani</td>
<td>UC Riverside</td>
<td>Keynote</td>
<td>maria.simani@ucr.edu</td>
</tr>
<tr>
<td>Joshua Smith</td>
<td>Fullerton</td>
<td>Speaker</td>
<td>josmith@fullerton.edu</td>
</tr>
<tr>
<td>Amy Sprowles</td>
<td>Humboldt</td>
<td>Speaker</td>
<td>aes54@humboldt.edu</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Role</td>
<td>Email</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Lynn Stauffer</td>
<td>Sonoma</td>
<td>Attendee</td>
<td>lynn.stauffer@sonoma.edu</td>
</tr>
<tr>
<td>Michael Stevens</td>
<td>Utah Valley University</td>
<td>Attendee</td>
<td>guido.urizar@csulb.edu</td>
</tr>
<tr>
<td>Kimberly Tanner</td>
<td>San Francisco</td>
<td>Speaker</td>
<td>kdtanner@sfsu.edu</td>
</tr>
<tr>
<td>Cynthia Trevisan</td>
<td>Maritime</td>
<td>Attendee</td>
<td>ctrevisan@csum.edu</td>
</tr>
<tr>
<td>Guido Urizar</td>
<td>Long Beach</td>
<td>Attendee</td>
<td>guido.urizar@csulb.edu</td>
</tr>
<tr>
<td>Linda Vanasupa</td>
<td>San Luis Obispo</td>
<td>Speaker</td>
<td>lvanasup@calpoly.edu</td>
</tr>
<tr>
<td>Virginia Vandergon</td>
<td>Northridge</td>
<td>Attendee</td>
<td>virginia.vandergon@csun.edu</td>
</tr>
<tr>
<td>Oscar Vega</td>
<td>Fresno</td>
<td>Speaker</td>
<td>ovega@csufresno.edu</td>
</tr>
<tr>
<td>Paul Villegas</td>
<td>Chico</td>
<td>Attendee</td>
<td>pvillegas@csuchico.edu</td>
</tr>
<tr>
<td>Belle Wei</td>
<td>San Jose</td>
<td>Speaker</td>
<td>Belle.wei@sjsu.edu</td>
</tr>
<tr>
<td>Erica Wildy</td>
<td>East Bay</td>
<td>Speaker</td>
<td>erica.wildy@csueastbay.edu</td>
</tr>
<tr>
<td>Kathy Williams</td>
<td>San Diego</td>
<td>Speaker</td>
<td>kathy.williams@sdsu.edu</td>
</tr>
<tr>
<td>Richard Ziegfeld</td>
<td>Ziegfeld & Associates</td>
<td>Attendee</td>
<td>richardziegfeld@hotmail.com</td>
</tr>
</tbody>
</table>
Credits

Conference Co-Chairs
Dr. Ganesh Raman and Dr. Sue Rosser

Lead Campus President
Dr. Leroy Morishita

Sponsor
Helmsley Trust

CSU Support Staff
Lilian Audet, Director of Operations; Evonne Rayson, Administrative Analyst; Cynthia Wyatt, Manager of Conference Services; Kelsey Magnusen, Marketing Communications Manager; Sara Zaragoza, Executive Assistant

Conference Publication Co-editors
Dr. Ganesh Raman; Dr. Richard Ziegfeld