### CSU The California State University COUNCIL ON OCEAN AFFAIRS, SCIENCE & TECHNOLOGY (COAST)

## **Planning for Sea-Level Rise Along California's Coast**

#### Planning for predicted levels and impacts

Global sea-levels are rising are due to both the melting of ice sheets and thermal expansion of seawater. Sea-levels off California's coast have risen approximately 0.64 ft (7.7 in) in over the last 100 years<sup>i</sup>. Sea-levels will undoubtedly continue rise in the next century and a half due to increasing global temperatures, though the rate at which levels will rise is highly dependent upon greenhouse gas (GHG) emissions and specific location. The recent sea-level rise (SLR) report commissioned by the state<sup>ii</sup> indicates that SLR in California will likely vary between 0.0-6.1 ft depending on both geographic location and GHG emissions with a possible worst case scenario of a 22 ft rise. For example, there is a 67% probability that SLR in the San Francisco Bay Area will be 1.0-2.4 ft by 2100 if GHG emissions are cut significantly, but the likely range increases to 1.6-3.4 ft if emissions are not significantly limited or reduced.

Long-term sea-level rise and shorter-term processes that temporarily elevate water levels such as storms, high tides and El Nino events increase the risk of coastal flooding and erosion. Sealevel rise of 4.6 ft will put around 480,000 Californians at risk from a 100-year flood event<sup>iii</sup>. Additionally, 31-67% of Southern California beaches may become completely eroded (up to existing coastal infrastructure or sea-cliffs) by the year 2100 under scenarios of SLR of 3.2-6.5 ft <sup>iv</sup>. Coastal armoring, or the building of hardened structures such as seawalls, has been the most prevalent mechanism to protect human communities from coastal flooding. However, coastal armoring results in greater scouring and the loss of sediment supply to shorelines down current and is therefore not an ideal solution.

# Natural infrastructure to protect human and natural communities

Natural infrastructure (strategically planned and managed networks of land and water that provide value to people) is becoming increasingly viewed as a potential solution that protects human communities while also providing critical ecosystem services and benefits. "Living shorelines" are a type of natural infrastructure specifically designed to reduce vulnerabilities associated with sealevel rise. For example, California's remaining coastal wetlands are a valuable asset that can help protect both natural resources and human infrastructure from SLR. CSU scientists are working with local natural resource managers to investigate how the addition of

**Select Experts:** please feel free to contact the following CSU experts.

Katharyn Boyer, PhD Professor, Biology San Francisco State <u>katboyer@sfsu.edu</u> Living shoreline projects using restored eelgrass and native oyster beds in San Francisco Bay.

#### **Ross Clark**

Director of Central Coast Wetlands Group, Moss Landing Marine Laboratories San José State rclark@mlml.calstate.edu Coastal wetland restoration and SLR planning.

#### Ben Hagedorn, PhD

Associate Professor, Geological Sciences, Cal State Long Beach <u>Klaus.Hagedorn@csulb.edu</u> Rising groundwater (due to SLR) causing mobilization of toxins from contaminated sites.

#### Phil King, PhD

Associate Professor, Economics San Francisco State <u>pgking@sfsu.edu</u> Economics of SLR, including studies that inform Local Coastal Plan updates.

#### Jennifer Marlow, JD

Assistant Professor, Environmental Science and Management Humboldt State Jennifer.Marlow@humboldt.edu SLR impacts to spent nuclear fuel storage sites near Humboldt Bay.

#### Patty Oikawa, PhD

Assistant Professor, Earth & Environmental Sciences Cal State East Bay <u>patty.oikawa@csueastbay.edu</u> Wetland restoration in San Francisco Bay and Sacramento Delta. sediment to these systems may increase their resiliency to flooding and increased erosion in the face of SLR.

Another type of living shoreline involves the restoration of subtidal eelgrass, often in combination with native oyster beds. In San Francisco Bay, an experimental native eelgrass-native oyster project reduced wave strength by 30%, which could help reduce shoreline erosion and mitigate against SLR<sup>v</sup>. Scientists and managers are currently investigating the efficacy of living shoreline projects along California's open coast, including the use of rocks and sediments to stabilize coastal sand dunes. In all cases, natural infrastructure offers multiple benefits such as carbon sequestration, habitat for threatened and endangered species, ocean acidification amelioration, and the provision of recreational space in addition to protection from SLR, flooding and erosion.

#### Local and Applied CSU Research

Researchers throughout the CSU system are working in a variety of disciplines to fill gaps in the understanding of sea-level rise impacts and best practices for adaptation. CSU researchers are distinguished by their local work and its relevance to current challenges faced by local governments and state and federal agencies. The CSU is committed to training the future workforce and leaders in climate change research and adaptation for California and the nation.

<sup>i</sup> <u>https://tidesandcurrents.noaa.gov/sltrends/sltrends\_station.shtml?id=9414290</u> <sup>ii</sup> Griggs, G, et al. 2017, Rising Seas in California: An Update on Sea-Level Rise

Science. California Ocean Science Trust.

<sup>iii</sup> Heberger M, et al. 2009. *The impacts of sea-level rise on the California coast*. Sacramento: California Climate Change Center.

<sup>iv</sup> Vitousek, S. et al. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. Journal of Geophysical Research, Volume 22, Issue 4.

<sup>v</sup> Boyer, K. pers. comm.

#### Kiersten (Kiki) Patsch, PhD

Assistant Professor, Environmental Science & Resource Management CSU Channel Islands <u>kiersten.patsch@csuci.edu</u>

Changes in coastal sediment supply due to SLR and the development of sediment management plans.

#### Dan Reineman, PhD

Assistant Professor, Environmental Science and Resource Management CSU Channel Islands <u>dan.reineman@csuci.edu</u> Human dimensions of coastal management with

emphases on surfing resources and coastal access equity.

#### Laurie Richmond, PhD

Associate Professor, Environmental Science & Management Humboldt State <u>laurie.richmond@humboldt.edu</u> Use of scenario planning for SLR adaptation with a focus on the City of Eureka.

#### Christine Whitcraft, PhD

Professor, Biological Sciences Cal State Long Beach <u>Christine.Whitcraft@csulb.edu</u> Impact of SLR on coastal wetlands and sediment augmentation.

#### Danielle Zacherl, PhD

Professor, Biological Science Cal State Fullerton <u>dzacherl@fullerton.edu</u> Restoration of native oyster beds to reduce wave energy in southern California.

The California State University Council on Ocean Affairs, Science & Technology (CSU COAST) is the umbrella organization for marine, coastal and coastal watershed related activities within the CSU, the nation's largest public four-year university system. Learn more at <u>www.calstate.edu/coast</u>.

