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Background

Effluent Flow Computations Example:
O; =2,000 gpm (0.1262 m3/s);

Influent, Permeate and Brine Flow Rates

0 R, =50%;
Rw — =P and Qi :Qe+QP R 1 Qe
Qi o, Op=0 -0, v Ql-
where 0,=0,(1-R)
R, = water recovery rate [-];
O, = brine (concentrate ) flow rate [L3T1]; 0, =2,000 (1-0.5) = 1,000 gpm
Q; =intake (feed) flow rate [L3T]; 0, =0.0631 m3/s

Op = permeate (fresh/produced) flow rate [L3T1].
0, =0.5xQ; =1,000 gpm (0.0631 m3/s)
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Impacts of surface discharge on coastal water quality
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Assumptions:

. Brine is a conservative (non-reactive)

hypersaline effluent limited dilution at

seabed=4-6
. It is an incompressible, Newtonian fluid

. Steady-state flow
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Surface discharge
(Al Ghubrah Plant, Oman)

Surface discharge
(Ashkelon Plant, during a
backwash)
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To minimize the impact...
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To minimize the impact...
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Digitizing Desalination

Discussion

(Credit: GWI 2022)




State-of-the-Art Summary
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KEY LESSONS

CHEAPER WATER

Higher recovery rate

S open the

High-recovery RO can provide significant value
to the desalination sector, allowing designers to
either significantly reduce the cost of new plants

or extract maximum value from existing plant
infrastructure.

ors for co
ew and old RO proc
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BWRO TO SWRO

It is now possible to practically and

In examining the viability and cost efficacy of
high-recovery RO, it is important to take a big
picture perspective at the facility level that also
considers the impact of capex and non-energy
opex on lifecycle cost, not just SEC.
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solutions currently available an

eeing use but there is still room

for further innovation.

(Credit: GWI 2022)
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Our Work at CSUN

Minimize: Cost
Subject to:

a. Initial Dilution (Length of Outfall, Pipe Diameter, Number of Ports, other drivers)

b. Water Quality Constraints (Mixing Zone) '8 100% Chassification (2019)
Area of mixing zone; " o
Viability of chosen location;
System reliability.

Min Z =w,L+w,D+w,N

2019 Codification: 33%

SUPER-DOMINANT FRACTION (3’s)
S > S dominant fraction (2’s)
= ~rid

(sub-dominant fraction) (1’s)

67%
67% Note: Biogenic ’

fractions are
included.

)
o

The numerical values are

S = f(L’ D, N, .. -) used to encode the

classes in GeoTiffs,
etc.

S — f(x’ g) MUD SAND
; ) b. Water Quality Constraint
L <L <L Vp

C <Cmax
D! <D <D"', melZ ¢
KNiSNnSN;‘, nel’

Subject to: a. Initial Dilution <
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Initial Dilution:

S=/(x.) /
S:f(L,D,N,W,T,W...) vaporation =

Current speed constraint:
Pr{®, <, |2a, Vi
a,€(0,1), Vi

Deterministic equivalent: Taking the inverse of the previous equatio

F, Wi _E(Wio)s >, w, < E(wl.)+(FW_1(1—0(1.))[Vazr(wl.)]0'5
Ve )l
[ ar(wl)] Replacing w, with w. we have:
Wi _E(Wi) T - 0
Tt )" W=, (' (@) [Var ()]




